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Stewartson Memorial Lecture

TURBULENCE: THE CHIEF OUTSTANDING DIFFICULTY OF OUR SUBJECT

Peter Bradshaw

Mechanical Engineering Dept., Stanford University

Stanford, CA 94305

Abstract

A review of interesting current topics in turbulence

research is decorated with examples of popular fallacies

abOut the =be_hav|our_oi'=turbulence..Topics _include the

status of the Law of the Wall, especiallyin compressible

flow; analogies between the effectsof Reynolds number,

pressure gradient,unsteadiness and roughness change; the

status of Kolmogorov's universalequilibrium theory and

local isotropy of the small eddies; turbulence modelling,

with reference to universality,pressure-strainmodelling

and the dissipationequation; and chaos. Fallaciesinclude

the mixing-length concept; the effectof pressure gradient

on Reynolds shear stress;the separabilityof time and space

derivatives;models of the dissipationequation; and chaos.

1. Introduction

I first met Kelth Stewartson in the early 1960's, when
he was a young member of the British Aeronautical Re-

search Council's Fluid Motion Subcommittee and I was its

(very) young secretary. Even in those days, I dimly sensed

that Kelth was not particularly fond of turbulence. It is,

therefore, a matter of double regret that I should be giv-
ing, so soon, a lecture in his memory, and should be forced

to choose the subject of turbulence as being my only area

of aerodynamic competence.

Those who knew Keith will recall that his strongest
term of scientific condemnation was _uurigorous'. I'm sure

he regarded the whole phenomenon of turbulence as being

uurigorous and probably invented by the Devil on the sev-

enth day of Creation (when the Good Lord wasn't look-

ing); I am inclined to agree. Keith would certainly have

approved of the rigour of Horace Lamb's _Hydrodynam-

ics _ (Cambridge University Press) - what the reviewer of

a later book once called his %wful correctness'. Lamb,

afterdiscussing allthe branches of hydrodynamics known

to him, finallyhad to deal with turbulence and remarked,

in Article 365, p. 651 of the 1916 edition, Ult remains

to callattention to the chiefoutstanding difficultyof our

subject." Seventy-odd years have come and gone; difl]cul-

tiesin hydrodynamics have come and gone; but turbulence

stillremains as the "chiefoutstanding difficultyof our sub-

ject_. Another dead friend,Jack Nielsen,Chief Scientistof

NASA Ames, said a few years ago that turbulence modeb

ing was the "pacing item" in the use of the NAS computer

complex, and I think his comment, likeLamb's, is still

true.

In thelast ten years or so we have become ableto solve

the complete time-dependent Navier-Stokes equations for

turbulent flow. However, the Reynolds numbers at which

//-£//_

we can get numerically-accurate complete solutions are

usually only about three or four times the lowest at which

turbulence can exist,and are considerably lower than the

Reynolds numbers obtainable in laboratory experiments,

let alone those found in real life. Therefore, although

turbulence is starting to become accessibleto computers,

there is no immediate prospect of the subject going the

same way as stress analysis and succumbing almost en-

tirelyto computation: unlike elasticity,turbulence is a

non-linear (strictly,quasi-linear)phenomenon and, at least

at high Reynolds numbers, isat present accessibleonly to

experiment. Thus, experimental fluiddynamics will last

for many years (hopefully,for my working lifetime).

Of course, turbulence would merely be a laboratory

curiosityor a computational playground ifitwere not for

its extreme importance in real life and in all the scien-

tific and engineering disciplines represented here today:-

in meteorology, aeronautical aerodynamics, shipbuilding,

oceanography, in all forms of pipeline design and manufac-

ture, in combustion, in any form of mixing of contaminant,

whether of heat or concentration or pollutant - in other

words in almost all forms of _interesting" fluid motion ex-

cept those on an extremely small scale. The cream poured

into a cup of coffee goes turbulent, and the flow patterns

look very cloud-like. (The poem on the letter _]P' will be

quoted in the oral lecture.)

I propose to use this Memorial Lecture to try to inject

a certain amount of rigour into the study of turbulence,

specifically by using the occasion to review some popular
fallacies about turbulence and the way in which turbu-

lent flows behave. Some of these fallacies or illogicallties

axe propagated by popular but outdated textbooks, but

some are at a deeper level of incomprehension, including
the preconceptions of workers in statistical mechanics who

think that turbulence must be easy. Naturally, parts of

the material that I will produce are controversial, in the

sense that some of my professional colleagues may disagree
with me. However, I hope that even the controversial sec-

tions of the paper will be of interest and may stimulate

clarifying discussion, either at this meeting or after it. It

is of course difficult to group illogicalities into any logical

order, so I have imbedded them into a study of the more

popular topics of turbulence _theory'. I hope the result is

neither a rag-bag nor a grab-bag. The oral lecture will be
less specialised than this written version.

My favorite definition of turbulence is that it is the

general solution of the Navier-Stokes equations. This is

the perfect answer by a government servant to an inquiry

by a Congreesman or Member of Parliament: it is brief, it

is entirely true, and it adds nothing to what was known



already. Nearly everybody believes, of course, that the

Navier-Stokes equations are an adequately exact descrip-

tion of turbulence, or indeed of any other nonrelativis-
tic motion of _a Newtonian-fluid. Even the smallest ed-

dies in turbuleni:e in ordinary liquids and gases at earth-

bound temperatures and pressures are large compared to

the mean free path between molecular collisions, so the

constitutive equation of the fluid is not in doubt. How-

ever, Sec. 4 of the present paper deals with the influence

of fluctuating dilatation divu on turbulence in compress-

ible gas flow, and in this case the uncertain value of the

bulk viscosity/_ (Goldstein 1) may matter.

Fortunately for professional educators, it is generally

accepted that the basic phenomena of turbulence are the

same at any Mach number - except for some special effects
to be discussed in Sec. 4 - so unless stated otherwise I will

assume the density to be constant.

2. The Law of the Wall

One of the main building blocks, or even foundation

stones, of the engineering study of turbulence is the "Law
of the WalV. It derives from the hypothesis / assumption

that, sumciently close to a solid wall (meaning, for exam-

ple, a distance from the wall an order of magnitude less

than the diameter of a pipe or the thickness of a boundary

layer) the flow depends only on the distance from the wall,
on the shear stress at the wall r_,, and on fluid properties.

The characteristics of the outer part of the flow do not

matter except that they determine rw. (In the discussion

below, the term _shear stress" will sometimes be used to

mean _shear stress / density", for short.)

Let us consider a boundary layer for simplicity. The

characteristics of the outer part of the flow to be consid-

ered include the free-stream velocity U_ and the boundary

layer thickness 6. The irrelevance of U_, as such, is a conse-

quence of Galilean (translational) invariance and does not
need much discussion. The irrelevance of 5 is more crucial,

as it depends on the assumption that the flow close to the

surface consists of eddies whose length scales (in all direc-

tions) are proportional to I/, with negligible contributions
from eddies whose length scales (in any direction) depend

on 5: if this is so, the boundary layer thickness should not

appear in any scaling of the inner-layer eddies. We shall
see in Sec. 5 that this hopeful view is not quite correct,

but it is certainly acceptable to first order.

The consequence of these arguments is, of course, that

the mean velocity and turbulence near the surface should

scale on the _friction velocity _ uf - (r_,/p) 1/2, on the

distance from the surface, y, and on the kinematic viscosity

u. One of the several dimensionally-correct ways of writing

this relationship is

u/u, = :l(_,_lv). (1)

Another is obtained by differentiating Eq. (1) and hiding

a factor of u_ll/v inside the function f2, as

aulay = (u,./y):_Cu,yl.). (2)

Here u_y/v isan eddy Reynolds number based on the eddy

velocity and length scales,i.e.the frictionvelocityand the

distance from the surface. At largevalues of thisReynolds

number we expect the effectsof viscosityon the turbulence

to be negligibleand thereforeEq. (2) reduces to

au/a_= u,/C,_y) (3)

where i¢ ._ 0.41 is a constant - Von Karman's constant, of

course. The integral of this relationship is the logarithmic

law, the additive constant C _ 5 being a constant of inte-

gration depending on the velocity difference between the

wail and the point at which Eq. (3) becomes valid.

The advantages of the above analysis over the tradi-

tional _overlap _ demonstration are (i) that the only as-

sumption made about the outer layer is that it doesn't

matter, and (ii) that a simple physical argument can be

used to simplify Eq. (2) to the so-called mixing-length

formula, Eq. (3).

The constant of integration C is equal to 5 only on

smooth walls: on rough walls, it becomes a function of

the roughness Reynolds number u,k/P and of the rough-

ness geometry; the uncertainty of the effective origin of

y on rough wails is a further complication. The constant

s, on the other hand, is supposedly universal: it is the
same in flows of water and of air on all geometries involv-

ing smooth surfaces, and indeed on all geometries involv-

ing only small roughness; it is the same in the atmospheric

boundary layer, in the depths of the ocean and on the sands

of Mars. Alas _ and C are not constant within the tur-

bulence modelling community - a remarkably wide range

of values is in use. Those quoted are from the painstaking

data analysis of Coles 2.

Now there are still textbooks - and even living people

- that regard the log law as a deduction from the mixing-

length formula, Eq. (3), (which it is) and also regard
the mixing-length formula for the inner layer as correct

(which it is) and also regard Prandtl's original derivation

of the mixing-length formula by analogy with molecular

motion as correct (which it certainly is not). As the Roman

Catholic Church quite properly pointed out to Galileo, the

success of deductions from a hypothesis does not prove

its truth. Philosophers call this the fallacy post hoc, ergo

propter hoc (_after that, therefore because of that_ and

it is the basis of witch-doctoring (last time we slaughtered

a white cow, it rained; there is a drought; therefore...).

Quite apart from philosophical questions of falsifiabil-

ity, it is clear that if a result can be derived by dimen-

sional analysis alone, like Eq. (3), then it can be derived

by almost any thegry, rlght or wrong, which iS dime_:

sionally correct and uses the right variables. There is a

strong suspicion that Prandtl got the idea of the lumps of

fluid ('Fl_sigkeitsballen") of mixing-length theory from

visual studies of turbulent open-channel flows with parti-

clessprinkledon the surfaceto show up the motio_n. Unfor-

tunately the boundary condition at a freesurface permits



only motion tangential to the surface and not normal to it,

so the surface becomes a plane of symmetry with the vor-

ticity vector everywhere normal to it. The only motions

that can remain are what sailors,but not landlubberly tur-

bulence researchers,call_eddies'.Try it,and you willsee

what Prandtl saw.

3. Extensions to the law of the wall

The law of the wall derived in Sec. 2 is valid, or is

supposed to be valid,for a shear stressequal to the wall

shear stressand a density equal to the wall density.There

issome support for an extended versionof Eq. (3),stillfor

u,y/_, :> 30 approx., in conditions where eitherthe shear

stressr - -p_'_ or the density p varieswith distance from

the surface. Ifu, is replaced by (r/p)x/2,we get

aUlay = (4)

The hand-waving argument for Eq. (4) is that, in the orig-

inal analysis leading to Eq. (3), ur is really being used as

the scale at height y, and not as a true surface parameter:

if r varies with y then the local value, rather than the wall

value, is the correct one to use in formulating an eddy ve-

locity scale. This would be a rigorous argument only if the

typical eddy size were small compared with y, so that the

local shear stress would be closely equal to the right basis

for a velocity scale, namely some klnd of weighted-average

shear stress over a _ distance equal to a typical eddy size.

Unfortunately, of course, the eddy size is of the same order

asZ/.

All we can claim is that local shear stress gives the

best easily-available velocity scale. Therefore, the exten-

sion of Eq. (3) to Eq. (4) requires an extension of faith in

the inner-layer hypothesis which by no means all research

workers possess. Nevertheless the application of Eq. (4) to
flows with suction or injection, where the shear stress varies

with distance from the surface according to r --% + pUV,_

isquite well supported by experiment. An operational dif-

ficultyisthat in typicalflows with suction or injectionthe

surface is porous, on a length scaleh, say,which isusually

not small compared with the viscous scaleu/u_, so that

the "roughness _ or _porosity" Reynolds number u,h/u is

important, implying that the additive constant in any in-

tegralof Eq. (4) willdepend on the surfaceconditions as

well as on the transpirationparameter V,,/u,.

4. Compressible flow

In the inner layer of a boundary layer in compressible

flow, the shear stress is approximately equal to the surface

value, but the density varies quite rapidly with distance

from the surface (increasing as the temperature decreases

with distance from the hot wall}. The _Van Driest tr_

formation _ transforms inner-layer velocity profiles to fit

the incompressible log. law. The transformation is, in

effect, an integral of Eq. (4) with p as a function of !/.

Here T and hence p come from the assumption of a con-

stant turbulent Prandtl number: detailswillnot be given

here, but can be found in Ref. 3 and elsewhere. The Van
Driest skin-frictionformula isderived from the Van Driest

transformation. Predictionsofskinfrictionin compressible

boundary layers (on fiatplates in zero pressure _adient,

say) are currently a subject of controversy,but there are

certainlyno experimental data that reliablyinvalidatethe

Van Driest skin-frictionformula or the Van Driest trans-

formation. This is probably the best justificationfor the

extension of the law-of-the-wallanalysis discussed in Sec.

3, but doubtless does littlefor the confidence of the deter-

minedly subsonic.

In low-speed flow, the mean (streamwise) pressure

gradient, as such, has almost no effecton turbulence (see

Sec. 6). In compressible flow,streamwise pressure gradi-

........... the density of fluidelements and can produce

largechanges in turbulence quantities,especially,of course,

in flowsthrough shock waves (e.g.Seliget al.4).Moreover,

even pressure fluctuationswhich are not small compared

with the mean pressure can affectturbulence. Specifically,

ifthe Mach number based upon a typical fluctuatingve-

locityand the localspeed of sound isno longer small com-

pared to unity,there may be significantdissipationof tur-

bulent energy via dilatation fluctuations divu, and signif-

icant correlations between fluctuations of pressure and of

dilatations'6.Measurements correlatedby Birch & Eggers I

show that the rate of spread of a turbulent mixing layer

(in zero mean pressure gradient)starts to depend signifi-

cantly on Mach number at Mach numbers close to unity.

The more more recent data of Papamoschou & Roshko s

show even larger Mach-number dependence. This appar-

ently contradicts the well-known finding that the behav-

ior of compressible boundary layerscan be quitewell pre-

dicted by turbulence models that ignore compressibility

effects(except of course that the rightmean density must

be used), at leastfor Mach numbers up to about 5. How-

ever, the typical turbulence intensityof a mixing layeris

about fivetimes that in a boundary layer,which implies

that a mixing layer at M=I, where M is based on the

mean velocitydifferenceacross the layer,has the same ra-

tio of velocity fluctuationto speed of sound (a.k.a.fluctu-

ating Mach number) as a boundary layerat roughly M=5.

There isgreat current interest,stemming from the NASP

and SCRAM JET projects,in prediction of mixing layers

as the only shock-free turbulent flow for which the data

show obvious effectsof compressibility.

5. "Inactive _ motion

The log-law analysis relies on the first-order hypothe-

sis that u,, _/and #, are the only relevant variables, which

cannot be exactly and perfectly true. If the arguments

that lead to Eq. (3) are applied to the turbulent motion
they lead to results for the log-law region like u'_/u_ =

constant, whereas any boundary-layer experiment shows a

decrease with increasing y, starting as close to the wall as
u,.y/v = 17 at typicalsmall laboratory Reynolds numbers.

This has led some people to regard the whole law-of-the-

wall concept of localscalingas fallaciousand itsapparent

success for the mean motion as fortuitous. Fortunately,

this apparent discrepancy in the log-law analysis can be

used to rescue the basic assumptions, by taking note of

the so-called _inactive"motion 0,1o. The concept issim-

ple: the motion near the surface,even though it results

mainly from eddies actually generated near the surface,



is necessarily affected by eddies in the outer part of the

flow (i.e. those whose length scale is of the order of 6).
Because the pressure fluctuation at a given point in a tur-
bulent flow is derived from an integral of the governing
Poisson equation over the Whole of the flow, it follows that
the eddies in the outer part of the boundary layer or pipe

flow can produce pressure fluctuations which extend to-
wards the surface and cause nominally-irrotational motion

in the surface layer. An equivalent, alternative, explana-
tion is the _splat _ mechanism (the origin of the term will

be explained in the oral lecture) in which the large eddies
in the outer flow are supposed to move towards the surface,
to be reduced to rest by the normal-component _imperme-

ability" condition at the wall, and to release their normal-
component energy into the two tangential components u
and w.

The "splat effect" motions, and the pressure fluctu-

ations generated in the outer layer, have very long wave-
lengths in the z and z directions compared to the motions
generated close to the surface. It follows from the con-
tinuity equation that the v-component velocity produced
near the surface by outer-layer pressure fluctuations or

large-eddy intrusions is of the order of y/A times the u- or
w-component velocity, where A is the z- or z-component
wavelength. Therefore the contribution of the "inactive _
motion to the shear stress -p_'_ is small, of the order of

y/A - hence the name "inactive _. Note that the "inac-
tive" fluctuations are not entirely irrotational: the bound-
sty condition u = 0, v = 0 at the surface results in the
generation of a Stokes layer (see Sec. 6 on _slip veloc-

ity"). Even though _inactive" u-component fluctuations
contribute signifl__cantly to u2, producing the anomalous gt-
dependence of u2 mentioned above, the effect on the mean
law of the wall is very small. (A logarithm is a slowly

changing function, so that fluctuations in u, have very lit-
tle effect on the te_ ln(u_y/v) in the log. law, and, there-
fore, the time-average velocity closely follows the log. law
written with time-average u¢.) The same arguments can
be used to support the use of the log. law in unsteady-flow
calculations at not-too-high amplitudes. The unsteady log.
law must also be limited to not-too-high frequencies of un-
steadiness: one would expect it to break down, at given y,

at a frequency which was not small compared to the typical
turbulence frequency u¢/y. Very few unsteady-flow exper-

iments reach frequencies high enough to disturb the log.
law - which is a criticism of unsteady-flow experiments in

general.

The contribution of the _inactive _ fluctuations to the

power spectra of u and w at low wave numbers (low fre-
quencies: wave number = 21r/[wavelength]) is consider-
able, resulting in very large differences between the mea-
sured spectra in typical turbulent flows and those predicted
by inner-layer analysis. The latter predicts that the wave-
number spectral density should scale on u_ and 1/, and that
the wave number k should appear as kl/(since we have ne-

glected v, this applies only for u_ll/v > 30 and at wave
numbers small compared with the viscous limit, but nei-
ther restriction concerns us here). In practice, there is an

apparent Reynolds-number effect at given u,y/L,: strictly
it is a y/5 effect, hut It//_ --- (u,y/v)/(u,6/v.

In the atmospheric boundary layer, which is of the or-
der of 1 km thick, the inactive-motion effects on spectra
measured at the standard height of 10 m are very large, and
in particular the u-component spectrum follows a -5/3

power law down to very low wave numbers. This phe-
nomenon, which is present, but less spectacular, in lab-
oratory boundary layers, has been the cause of a large
amount of confusion, controversy and difficulty, because
the classical Kolmogorov scaling indicates that the spec-
trum should vary as k-s� s only for wave numbers large
compared to those of the energy-containing eddies. In the

context of the atmospheric boundary layer at a height of 10
m this means wavelengths much smaller than 10 m. The
fact that the experimentally-observed spectrum follows the
-5/3 law down to wave numbers far lower than could be
expected from the arguments of inner-layer scaling and the
Koimogorov universal-equilibrium hypothesis is one of the
most difficult _fallacies _ in turbulent flow: it is of course

a case of post hoc ergo propter hoc.

In summary, the qualitative idea of _inactive motion _

explains both the apparent failure of inner-layer scaling
and the unexpected success of the "5/3 law.

6. "Slip velocity _

Several difficulties or misconceptions about turbulent

flows over walls can be cleared up if we recall that the
very thin viscous wall region u_y/u < 30 really produces
what might be called a "slip velocity" between the fully-
turbulent flow and the surface. As well as the obvious

example of Reynolds-number (and Peclet-number) effects,
they include the effects of pressure gradient, unsteadiness
and change of surface roughness.

6.1 Effects of Reynolds number and Pecht number

(viscosity and conductivity)

If the Reynolds number of a turbulent flow - based

on total thickness and, say, the square root of the maxi-
mum shearstressor turbulentenergy- islarge,classical

(e.g.Kolmogorov) theorysuggeststhatthe detailsofthe

turbulentmotionshouldbe independentofReynoldsnum-

ber,exceptfortheverysmallesteddieswhich areresponsi-

bleforviscousdissipationofturbulentkineticenergy into

thermal internalenergy. In thisrespectat least,classi-

cad theory seems to be correct, and there is no significant
evidence to refute it. If the Reynolds number of a given
turbulent eddy, made with its typical velocity fluctuation

and its typical length scale, is large, there is no reason why
viscous effects on the eddy should be significant. (This
statement should strictly be phrased in statistical terms!)
In a pipe flow, half the mean-square u-component inten-
sity near the centre-line comes from wavelengths larger
than the pipe diameter, so the "eddy Reynolds number"
of the main energy-containing eddies is of tl£e same or-
der as the mean Reynolds number defined at the start of

the paragraph, and we can use the former for simplicity.
The _energy cascade" process of Kolmogorov theory, at-

tributable to random vortex stretching, implies that tur-
bulent energy is transferred from energetic eddies of low
wave number (i.e. large Reynolds number) to weak ed-
dies of high wave number (small Reynolds number), and



althoughl)ack-scatter tran_er from small eddies to large

can occur intermittently, the time-average transfer of en-

ergy is from the large eddies to the small and there seems
to be no significant "back scatter" of viscous effects.

Near a solid surface (1/+ > 30) the largest eddies,
whose wavelength is roughly equal to y, are no longer very

large compared to the smallest eddies (the smallest-eddy
scale, Kolmogorov's rl or lk, is about 0.061/at I/+ = 30), so
the energy-containing eddies - which also carry the shear

stress - start to depend on viscosity. (Also, and slightly
differently, the mean velocity gradient becomes so large
that viscous shear stress is. a significant fraction of the to-
tal shear stress.) Therefore, viewed from the outer part of
the flow, there is a viscosity-dependent region near the wall
and so the velocity difference between the surface and, say,

y/6 = 0.1, depends on Reynolds number. Viewed from
the outer part of the flow, there is a Reynolds-number-

dependent "slip velocity" at (strictly near) the surface.

In a free shear layer (wake, jet, mixing layer...) there
is no true viscous effect unless the Reynolds number is
so low that turbulence can only just exist. However, free

shear layers can be quite strongly dependent on the ini-
tial conditions, for long distances downstream, and since
the initial conditions frequently do depend on Reynolds
number there is a "pseudo-viscous" effect.

A corollary of the negligibility of viscosity as part of
turbulent transport of momentum is the negligibility of
conductivity in the transport of heat or mass by turbu-

lence. Briefly (again) the "turbuient Prandti number _ is
independent of the molecular Prandtl number unless the
Reynolds number based on eddy velocity scale and eddy
length scale, i.e. u,1//v is small.

6.2 Effect of pressure gradient

Another of the standard incomprehensions about tur-
bulent flow is the effect of (streamwise) mean pressure gra-
dient on the turbu]ence as such: recall that we are con-

sidering only incompressible flow. It arises partly because
experimenters tend to normalize their turbuhnce measure-
ments by the local mean velocity. In adverse pressure gra-

dient, say, the mean velocity decreases with increasing z
so the normalized turbulence intensities, shear stress etc.

increase. However it can easily be shown that absolute tur-
buhnce properties on a given streamline are only slightly
affected by pressure gradient.

The Reynolds-stress transport equations do not con-
taln the mean pressure (they contain correlations between

the pressure fluctuation and instantaneous rate of strain,
but pressure fluctuations have no connection whatsoever

with the mean pressure). Also, the z-component mean

vorticity av/az - au/a1/is unaffected by pressure gradi-
ent, and if we assume that the boundary layer approxi-
mation is valid this means that aU/ay is unaffected, even
though the pressure change leads to a change in veloc-
ity all through the shear layer and thus may change /_

significantly. Alternatively, recall that a static-pressure
gradient does not affect the total pressure P (on a given
streamline) directly. In the simple case of two-dimensional

flow, therefore, OP/O@, where ¢ is the stream function,
is unaffected, and if e'_p/a1/ is negligible, as required by
the boundary-layer approximation, a little algebra shows
that c3U/01/is unaffected. At the surface, where the total
pressure is equal to the static pressure, there is a change
in P and OU/ay, produced of course by viscous stresses.
The "internal layer", in which the total pressure and mean

vorticity rise to their unaffected profiles, gradually spreads
out from the surface, but outside this the static-pressure
gradient has no effect except to reduce the mean velocity
and thus thicken the boundary layer. This result applies to
laminar or turbulent boundary layers (or other wall flows

such as those in tapered ducts). In summary, the initial
effect of pressure gradient is confined to the "slip velocity"
at the wall.

Mean pressure gradients do have some effects on the
turbulent motion. Adverse pressure gradient stretches ed-
dies in the 1/direction, because the shear layer thickens:
however, the area, in side view, of a given eddy or fluid

element is unaltered, and so if we suppose that the length
scale of an eddy is just the square root of its area in side
view, or the cube root of its volume, the length scale is

unaltered. (This is admittedly a crude argument.) Of" the
terms in the Reynolds-stress transport equations, the only
ones directly affected are the 1/-component diffusion terms,
which are the derivatives of various triple prodects, etc.,
with respect to 1/. If the triple product on a given stream-

line is unaffected but the streamlines diverge in the z - 1/
plane because of the adverse pressure gradient, the 1/-wise
derivative is reduced.

6.3 Unsteadiness

The effect of unsteadiness can be understood in the

same way as that of pressure gradient - of course, unsteadi-
ness is usually forced by a streamwise pressure gradient.
In the case of unsteady laminar flow the internal layer is
called a Stokes layer. There are close correspondences in
laminar flow between an infinite oscillating plate in still
air and flow over an infinite stationary surface driven by
an oscillating pressure gradient, and the qualitative corre-
spondence carries over to turbulent flow. If the pressure

gradient is strong enough to cause separation (however de-
fined), the internal layer is carried into the outer part of
the flow and the "slip velocity" concept breaks down, as it
would in steady separation.

6.4 Change of roughness

Another occasion where a change of boundary con-

dition affects the flow only in an "internal layer" is the
Bow downstream of a change in surface roughness. This
is comparatively rare in aerodynamics but an important
case in meteorology where, for example, air can flow from
the _smooth" ocean to the land and undergo a change
of apparent surface roughness. Indeed, the internal-layer
concept was first proposed to describe this case. As the
surface boundary condition changes, the additive constant
C in the logarithmic law for a smooth surface is replaced
by the appropriate value for a rough surface. The effect of

this change in surface boundary condition spreads outward
from the surface at an angle of the order of rms u/U, i.e.



of the order of 3 %, so that the rate of contamination of

outer-layerturbulence by inner-layerchanges isno greater

than about 1 or 2 degrees. Since the pressure gradient is

nominally zero there isno streamline divergence above the

internallayer,although the change in velocityin the inter-

nal layerproduces a verticaldisplacement of the outer flow

(upwards, in the case of a smooth-to-rough change where

the flow in the internallayerisretarded).

T. Spectra and convection velocity

Classical turbulence theory aims to predict all the sta-

tistical properties, not simply the Reynolds stresses. In

particular it deals with the statistical distribution of eddy
sizes. It is usually formulated in terms of wave-number

spectra, wave number being a vector with the direction of

wavelength and the magnitude of 2_r/wavelength. (The
alternative is two-point spatial correlations, which are less

convenient mathematically.) Wave-number spectra are the
Fourier transforms of the two-point correlations, but a full

description requires correlations for all magnitudes and di-
rections of the distance between the two points, or spectra

for all magnitudes and directions of the wave number). In

most experiments only frequency spectra, and a few cor-
relations along the coordinate axes, are measured.

This is the best place to comment on the definition

of _frequency" in turbulence. The frequency seen by an

observer moving with the mean flow is (velocity scale of

turbulence) / (length scale of turbulence) - for example

ur/y in the inner layer - but the frequency seen by a fixed

observer is approximately (MEAN velocity) / (length scale

o[ turbulence) and is usually much larger. The recipro-

cal of the moving-observer frequency is sometimes called

the "eddy turnover time": this is of course an order-of-

magnitude concept. A related difficulty is the status of

time derivatives: all transport equations in fluid flow, in-

cluding the Navier-Stokes equations, have the operator

a a

on the left-hand side. It iscalled the substantial deriva-

tive,or the transport operator,and itisthe rateof change

with time seen by a fluidelement. The relativesizeof the

temporal and spatial derivativesdepends on the velocity
of the observer but the sum of the derivativesdoes not.

The fixed-observerfrequency isused to deduce z-com-

ponent wave-number spectra from frequency spectra,using

Taylor's hypothesis that the speed at which the turbulence

pattern moves downstream (its"convection velocity"} is

closely equal to the mean velocity.It is qualitativelyob-

vious that thiswillonly work well ifthe mean velocityis

large compared to the velocityscaleof turbulence, so that

an eddy iscarried past the measurement point in a time

very much lessthan its turnover time. A more precise

analysis is possible.

There are various definitions of the actual "convec-

tion velocity" of turbulence: most are in effectphase ve-

locitiesand thereforenot idealfor considering convection

of turbulent kineticenergy or Reynolds stress. A plansi-

ble definition of a group (energy-transport) velocity comes

from considering the streamwise (say, z-wise) "diffusion"

of turbulent energy (transport of the turbulent energy by

the turbulence): the energy flux rate, whose z derivative

appears in the turbulent energy equation, is -_/g + ('_ +

uv a + uw2)/2. Rates of energy flux due to pressure fluc-

tuations seem to be small - except perhaps near the free-

stream edge of a turbulent flowwhere pressurefluctuations

drive an "irrotational"motion which extends outside the

vorticalregion - and are certainlynot measurable, which

is some._._tlficationfor neglecting them. Doing this,and

writing q2 for us + v2 + _v_, (so that the turbulent kinetic

enerj_-is._2), the above energy fluxratecan be written

as (u s + uv _ + _)/_. We can define the transport ve-

locity of turbulent energy as this flux rate divided by the

turbulent energy. The largest contribution to the numera-

tor is uS�2 - though the others are not negligible - so the

transport velocity is of order V/(_) x S_, where S, is the

skewness of u. Now S, lies in the range +1 approx, over

most of a boundary layer, so we can finally say that the

z-component transport velocity of turbulent energy is not
more than a few times _/(_). Since this is the difference

between the group velocity of the turbulence and the mean

velocity, we see that the difference is a smaJl percentage of

the mean velocity in flows with low turbulence intensity,

such as boundary layers. This quantitatively justifies the

use of Taylor'shypothesis insuch flowsand ofcourse allows

an estimate of itsinaccuracy in highly-turbulentflows.

Differencesbetween convection velocityand mean ve-

locityaxe largenear the free-stream edges of mixing layers

and jets.In these regions the irrotationalmotion, induced

by pressure fluctuationsgenerated in the high-intensityre-

gion of the flow near the inflexionpoint(s)in the velocity

profile,isstrong compared to the true (vorticity-carrying)

turbulence, and itsconvection velocityisnecessarilyclose

to the mean velocity in the high-intensityregion. The ro-

tational motion (vorticitypattern) seems to travel at a

speed closeto the localmean velocity,as predicted by the

above analysis (intensitiesnear the outer edge of a jet are

not large).In terms of the above analysis,the streamwise

transport velocity of the vorticitypattern is stilldomi-

nated by the triple-productterms, while fu/p determines

the transport velocity of irrotationalmotion.

The de Havilland Comet Ijet airlinerhad four engines,

buried in the wing roots. The designerscarefullyarranged

thatthe jetsthemselves would clearthe fuselage,but forgot

the "near field"pressure fluctuations- far more intense

than the jet noise - that drive the irrotationalmotion.

The pressure patterns, travellingat the above-mentioned

convection velocity,produced fluctuatingstressesat the

fixed-observerfrequency in the aircraftskin,which led to

fatigueof the aluminium.

Later marks of Comet had the engines toed out.

Misconceptions about turbulence can be expensive!

8' The microscale and the Kolmogorov theory

Frequently,the Taylor _microscale" isused as a length

scalein discussionsof wave-number (orfrequency) spectra.



The microscale A is a hybrid scale of turbulence. It is
usually defined by

(other definitions with different choices of velocity compo-
nent or gradient direction occasionally appear). This is

an equationwhose numerator isa propertyofthe energy-

containingturbulence,but whose denominatorisa prop-

ertyofthe dissipatingeddies(ifthe dissipatingeddiesare

statisticallyisotropicthedissipationrateisIS_(0u/0=)2).
For thisreasonitisa misconceptionto regardthe mi-

croscaleasthe lengthscaleofany particulargroup ofed-
dies:itactuallyliescloserto the lengthscaleofthe dis-

sipatingeddiesthan thatofthe energy-containingeddies.

The Reynolds number based on the microscaleand the

root-mean-squareturbulenceintensity,_u"_)z/2/p,however,

has a more understandablemeaning. IftheReynoldsnum-

ber ishigh enough for the dissipationto be equated to

the isotropicformula,the rnicroscaleReynoldsnumber is

proportionalto the square root of an "eddy" Reynolds

number for the energy-containingmotion,based on the

rms turbulenceintensityand the dissipationlengthscale

L -=(u'_)s/2/c.Of course,thisdoesnot givethemicroscale

the statusofEddy Length Scaleposthoc.

Itisimportanttonoticethatthe _dissipation"inthe
definitionof L isinfactthe rateoftransferofturbulent

kineticenergyfrom thelargeeddiestothesmallesteddies

which is,b7__lPrevailin_gt_urbulencetheories,supposedto

be a propertyofthe largeeddiesratherthan the smallest

eddies.The smallesteddiessimplyrearrangethemselves

todissipatetheenergyhanded down tothem. Iftheturbu-

lenceischangingslowlywith time(orstreamwisedistance)
then,ofcourse,the rateoftransferfrom the largeeddies

to the smallesteddiesisequal to the rateat which en-

ergy isbeing dissipatedby the smallesteddies,but this

isnot formallyan equalitybecausethe _ca.scade"process

isnot instantaneous.In rapidly-changingturbulentflows

the "equillbrlum"arguments fail,and the rateoftransfer

from theenergy-containingeddiestothedissipatingeddies

isnotequaltotherateatwhich energyisbeingtransferred

from the dissipatingeddiestoheat.

This restrictionon

rium" theory,which we

gotten.

Another restriction

of course,energywhich

Kolmogorov's"universalequilib-
used inSec.6.1,istoooftenfor-

oftheKolmogorov theoryisthat,

istransportedinthe I/direction

by turbulent "difi'usion" will be generated at small 11,but
dissipated at large I/ where the statistical properties are
different. In particular, in flows with a free-stream bound-

arT, energy is generated in regions of large mean shear and
then transported in the positive Z/direction to regions of
zero or negligible mean shear before being dissipated. The
energy transfer through the inertial subrange at the second
location is likely to be intermediate between the dissipation
ratesat the two locations.

Nevertheless results from a large number of experi-
ments on turbulent shear layers have recently been anal-
ysed li to show that Kolmolzorov scaling works remark-

ably well when adjusted for the intermittency factor -_ (the
fraction of time for which the flow at a given location is
turbulent).In an intermittentregion,the averageofany

turbulencequantitywithinthe turbulentpartofthe flow

is1/'ytimes the conventionalaverageoveralltime. For

example the conventional-averagespectraldensityand the

dissipatione must both be multipliedby 1/'b However

the Kolmogorov "-5/3" law forthe spectraldensityin

the so-calledinertialsubrange contains¢i/3so that,for-

really,thereisa sparefactorof-7I/3and we certainlydo

not expect the Kolmogorov law to hold ifwrittenwith

conventional-averagequantities.The data analysisofRef.

11 shows that the Koimogorov formulastillworks for a
wide rangeofintermittentflowswhen writtenforthe tur-

bulentpart ofthe flow,i.e.takingaccountof the "spare

factor",and usingthe dissipationrateat the localvalue

ofI/. Since the formulastrictlyappliesonly to nearly-

homogeneous turbulence,and an intermittentregion,al-

most by definition,containsonlyone largeeddy ata time,
thisresultisa surprisingtestimonialtothe robustnessof

theKolmogorov theory.Needlesstosay,theusualcautions

about post hoc apply.

9. Turbulence modelUng

9.1Normal pressuregradients

An incomprehensionentirelyunrelatedtoturbulence,

which neverthelesscausesconfusionintestsofturbulence

models,isthe effectofnormalpressuregradienton bound-

ary layersand othershearlayers.Ifthe shearlayerobeys

the boundary layerapproximationthen,by definition,the

pressure gradient in the F direction is negligibly small.
However, if in a real flow the normal pressure gradient
is not negligible, there will be a velocity gradient i)U/8_l
even in the external stream (where the total pressure is
constant) and this velocity gradient will, in principle, lead
to extra production of turbulence via the product of mean
velocity gradient and turbulent shear stress. Of course, the
same effectswould be found withinthe shearlayer!J</_,

but would be lesseasilyidentified.Therefore,even ifa

turbulencemodel producesexactlycorrectpredictionsof

the shearstress- giventhemean velocityprofileasinput

- itwillnot giveacceptableresultsinthecasewhere nor-

mal pressuregradientsaffectthe mean velocitygradient.

(Recallthat the boundary-layermomentum equationcan

be writtenas dP/dz = dr/dy.)This isprobablya much

more importantreasonforinaccuracyofpredictionsbased

on the boundary layer approximation in rapidly-growing
flows near separation than the often-quoted presence of
significant normal-stress gradients.

9.2 Universality

Perhaps the biggest fallacy about turbulence is that
it can be reliably described (statistically) by a system of
equations which is far easier to solve than the full time-
dependent three-dimensional Navier-Stokes equations. Of

course the question is what is meant by "reliably ", and
even if one makes generous estimates of required engineer-

ing accuracy and requires predictions only of the Reynolds
stresses, the likelihood is that a simplified model of tur-



bulence will be significantly less accurate, or significantly
less widely applicable, than the Navier-Stokes equations
themselves - i.e. it will not be "universal".

Irrespective of the use to which a model will be put,
lark of universality may interfere with the calibration of
a model. For example, it is customary to fix one of the
coefficients in the model dissipation-transport equation so
that the model reproduces the decay of grid turbulence

accurately. This involves the assumption that the model is
valid in grid turbulence as well as in the flows for which it
is intended - presumably shear layers, which have a very
different structure from grid turbulence.

It is becoming more and more probable that really
reliable turbulence models are likely to be so long in devel-

opment that large-eddy simulations (from which, of course,
all required statistics can be derived) will arrive at their

maturity first. (The late Stun Corrsin once described the
process of turbulence modelling as a _trek to determi-
nacy".) Certainly, over the last twenty years the rate of
progress in turbulence modelling has been pretty small
compared to the rate of progress in development of dig-
ital computers, and the consequent increase in Reynolds-
number range and geometrical complexity attainable by
simulations. Until recently, most work has concentrated
on "complete" simulations, covering the whole range of
eddy sizes, while large-eddy simulations, which alone of-

fer the prospect of predictions at high Reynolds numbers,
have been somewhat neglected.

9.3 Eddy viscosity and gradient transport

Turbulence models which invoke an eddy viscosity (of
whatever type) necessarily produce pseudo-laminar solu-
tions with the stresses closely linked to the mean-flow gra-
dients: they may be well-behaved but they are not usually
very accurate away from the flows for which they have

been calibrated. Turbulence models based on term-by-
term modelling of the Reynolds-stress transport equations

produce solutions which may be accurate in some cases,
but are liable to fail rather badly in other cases: that is,

they are "ill-behaved" in a way that eddy-viscosity meth-
ods axe not.

It may be this areliable inaccuracy _, rather than the
larger computer resources needed for Reynolds-stress trans-

port models, which has ted to two-equation (e.g. k, c)
or even one-equation methods being the industry stan-
dard. With all goodwill to my friends Barrett Baldwin
and Haxv. Lomax, the one-equation Baldwin-Lomax tur-
bulence model has been extended - by others - fax beyond
its intended domain, simply because it has the virtue of
almost never breaking down computationally!

It has, of course, often been said that it is just as un-
reliable and unrealistic to define an eddy viscosity entirely

in terms Of turbulence properties (as in the k, E method) as
to define it entirely in terms of mean-flow properties as in
the Baldwin-Lomax method. Eddy viscosity is the ratio of

a turbulence quantity (i.e. a Reynolds-stress) to a mean-

flow quantity (i.e. a rate of strain or velocity gradient), so,
like the microscah, it is a hybrid quantity.

Minor fallacies in turbulence modelling abound, but
misuse of gradient-transport hypotheses is probably re-
sponsible for more than its fair share. One of the most

spectacular was the use many years ago, by authors I will
not identify, of the gradient-transport approximation for
diffusion of turbulent energy by pressure fluctuations. In
terms of classical physics, anything less likely than pres-
sure di/Tusion to obey a gradient-transport approximation
could scarcely be imagined. A fallacy which has, in charity,
to be regarded as a deliberate approximation, is the use -

even in Reynolds-stress transport models - of the eddy-
diffusivity (gradient-transport) approximation for the tur-
bulent transport terms. It appears that most of the tur-
bulent transport of Reynolds stress is provided by triple
products of velocity fluctuations, rather than by the pres-
sure diffusion just mentioned, and therefore a gradient-

transport approximation is not so obviously unphysicai.

9.4 The dissipation-transport equation

Most turbulence models, whether relying on an eddy

viscosity or on the Reynolds-stress transport equations,
use the dissipation-transport equation to provide a length
scale or time scale of the turbulent flow. Strictly, the

length scale or time scale required is that of the energy-
containing Reynolds-stress-bearing eddies, not that associ-
ated with the dissipating eddies as such, and so two ques-
tions arise. One is whether the rate of dissipation is ade-
quately equal to the rate of energy transfer from the large

eddies (which clearly, is the quantity that we really want
to model); the other is whether, if we really pretend to
be using the dissipation transport equation - all of whose
terms depend on the statistics of the sma//est eddies -

we can logically model those terms by using the scales
of the larger, energy-containing eddies. I think it is in-
oscapable that current models of the so-called dissipation
transport equation, which certainly do parameterize the
terms as functions of the large-eddy scales, start out with
the dissipation-transport equation as such and end up with

a totally-empirical transport equation for the energy trans-
fer rate. In other words, the relation between the "dissipa-

tion" transport models and the exact transport equation
for turbulent energy dissipation is so tenuous as not to
need consideration. Unfortunately, even Reynolds-stress
transport models usually employ this suspect diesipation-
transport equation to provide a length scale, and this is
undoubtedly one of the reasons why Reynolds-stress trans-
port models have not outstripped two-equation models. A
less-used alternative to the _ equation is the _ equation

(admitted to be totally empirical). _ is nominally pro-
portional to c/k where k is the turbulent kinetic energy,
but conversion from one to the other (in either direction)
produces the interesting result that the turbulent trans-
port terms in the transport equation for the first quantity
(the integral of transport terms over the flow volume be-

ing by definition zero) convert to a transport term plus
a "source" term in the equation for the second quantity.
There is increasing evidence that using _ to provide a

length scale gives better results than using _: if there is
a reason other than more judicious choices of empirical co-
efficients, it must lie in the above-mentioned source term.



9.5 Invaxiance

One of the customary requirements of a turbulence

model is that it should be _invariant" (with respect to

translationor rotation of axes). The boundary layer(thin°

shear layer) equations are not invariant: it is therefore

quite unrealistic to expect a shear-layer model to be totally

invariant, and it is perfectly realistic to suppose that the

d_rection normal to the shear-layer (y) is a special direc-

tion. There seems to be no reason why a turbulence model

should not, given an identifiable_specialdirection"in a

shear-layer use that special direction for orientation of its

empirical constants and functions. Even though equations

(such a.s the Navier-Stokes equations or the thne-average

Reynolds equations) may be invariant, the boundary con-
ditions for which they are to be satisfied certainly are not

invariant (almost by definition). Therefore, the solutions

of the exact, or approximate, equations of motion of turbu-

lent flow cannot be expected to be invariant with respect to

tr_uslation or rotation, From this it is a rather small step

to argue that the empirical constants or functions in these

model equations should, again, be released from invariance

requirements.

0.6 Local modelling of pressure-fluctuationterms

The mean products of fluctuatingpressure and fluc-

tuating rates of strain that act as redistributionterms

in the Reynolds-stress transport equations represent,very

crudely speaking, the effectof eddy coUisious in making

the principal Reynolds stressesmore nearly equal - that

is,making the turbulence more nearly isotropic(statisti-

cally). The shear stressin isotropicturbulence iszero,so

the effectof the pressure-strainterms on the shear stress,

and their modelling, is of great interest.

Pressure fluctuationswithin a turbulent flow are one

of the Great Unmeasurables: they are of the order of

pe 2 and so, unfortunately, are the pressure fluctuations

induced on a static-pressureprobe by the velocityfield.

That is,the signaloto-noiseratioisof the order of one. To

say that signalscannot be educed even with S/N = O(1)

isitselfa fallacy,hut in thiscase the attempts made to do

so have not met with general acceptance. Pressure fluc-

tuations can be extracted from simulations,but these are

confined to low Reynolds number.

An equation for the pressure (mean and fluctuating)

can be obtained by taking the divergence of the Naviero

Stokes equations. It is a Poisson equation, and it isnec-

essary in turbulence modelling to consider the different

terms on the right-hand sideseparately,by writing a Pois-

son equation for each and adding the solutionsto get the

pressure. One such is the equation for the "rapid_ pres-

sure,which for a two-dimensional boundary-layer flow is

V2p aU c_v

= (7)7

The "rapid_ pressure isso calledbecause itresponds im-

mediately to a change in the mean flow,as represented by

aU/ap. To regard thisapparently-surprisingfactas phys-

icallymeaningful isa misconception: it isjust a resultof

the way we take averages, and, obviously, the turbulence

at a given instant does not know what the mean flow ks.

A highly symbolic solution of the equation is

p' aU 8v- = -2v (s)
p c_p az

where V -2 is a weighted integral over the whole flow vol-

ume. In other words, the "rapid" pressure at a given point,

and itscontribution to the pressure-strainterms at that

point,depend on conditionsfor a distance ofseveraltypical

eddy length scalesaround that point - i.e.they are _non-

local". The same non-localityaccounts for the presence

of irrotationalvelocity fluctuationsoutside the turbulent

motion.

Almost allcurrent stress-transportturbulence models,

with the exception of that of Durbln x2,model the pressure-

strain terms and other pressure-velocitycorrelationsen-

tirelyas functions of loca_quantities.(Allthe other terms

in the Reynolds-stress transport equations are genuinely

localquantities.) This is equivalent to replacing Eq. (8)

by
p,e _U -2 av

- that is, evaluating c_T3/ap at the position where p' is

required and volume-integrating only o%/az.

In Ref. 13, the behavior of existing models for the

pressure-strainterms was analyzed, using simulation data

in a duct flow to evaluate the terms directly.The results,

surprisingly,suggest that the differencebetween the ex-

act pressure-strainterms, using p' from Eq. (8),and the

approximate results,using p,s from Eq. (9),isnegligibly

small (or,at least,small enough to be hidden in the empir-

icalcoefficientin the pressure-strainmodel) except in the

viscous wall region. Within the viscous wall region, the-

differencebetween the true pressure fluctuation;/and the

approximate pressure fluctuation_B isnot onlyvery large

but eccentricallybehaved. Itisnot suggested that viscous

effects,arising from the v = 0 boundary condition at the

surface,are directlyto blame: itismuch more likelythat

the effectsof the v = 0 boundary condition are mainly re-

sponsible,but it issurprisingthat these effectsshould be

small outside the viscous wall region. A finalpossibility

isthat the changes in turbulence structurewith u,y/u in

the viscous wall region are so large as to invalidatelocal

models.

This suggests not only that standard pressure-strain

models are grossly inaccurate in the viscous wall region,

but alsothat any extension of a standard turbulence model

into the viscous wall region willbe similarlyinaccurate.

This inaccuracy can be camouflaged by the insertionof

_]ow-Reynolds-number _ functions,nominally functions of

the wall distance u,p/_,. Obviously, ifthe realflow scales

with u,p/v, thissimple procedure suffices,but if the flow

approaches, or goes beyond, separation then inner-layer

scaling - and presumably "low-Reynolds-number _ models

- break down, even if _,f//v is replaced by the guaranteed-

tea.[ quantity kl/29/v.



I0. Chaos

"What kept you?" you may ask. Chaos has been
one of the buzzwords in applied mathematics in recent

years, and turbulence is often cited as the supreme ex-

ample. The complication of turbulent motion, with its
broad spectrum of wavelengths, is far greater than that of
the Uchaotic_ solutions of some low-order systems of cou-
pled ordinary differential equations. Analysis of simulation
data t4 suggests that the dimension of the turbulence ato

tractor (roughly, the number of modes or Udegrees of free-
dom" needed to represent the turbulent motion) is several
hundreds at least, even at the lowest Reynolds number at
which turbulence can exist. The upper bound on the di-

mension is, roughly, the number of totally-arbitrary modes
(say, Fourier modes or finlte-difference formulae) needed to
represent the motion. Now since direct-simulation calcu-

lations need, typic-ally, 128 s _ 2 x 10 s Fourier or finite--
difference points for flows at a very modest laboratory-

scale Reynolds number, we can take the upper bound of
the attractor dimension as being of this order: for the
barely-turbulent flow of Ref. 13, 32 s _ 30000 might do.
Large-eddy simulations need fewer points: 128 s might do

for any Reynolds number, at least if the viscous wall region
did not have to be resolved. These are all impracticably
large estimates of the attractor dimension.

However, several authors have based their work on the

classically incorrect syllogism _Solutions of some equations
with few degrees of freedom yield complicated behavior:
turbulence has complicated behavior: therefore turbulence
may be represented by the solution of equations with few
degrees of freedom _. The last hypothesis of course stood

by itself for many years B.C. ibefore chaos), and a great
deal of brain power has been applied to prove it - i.e. to
produce a usably small set of modes to describe turbulence

- but without great success: the most ambitious efforts
require an amount of computing time which is not much
lessthan thatofa large-eddysimulation.

The conceptsofchaostheorymay ofcoursebe quali-

tativelyusefulinturbulencestudies.One istheconceptof
predictability. Qualitative arguments about the non-linear

Navier-Stokes equations suggest that if two almost identi-
cal turbulence fields with the same boundary conditions
are set up at time t -- 0, then the two instantaneous veloc-
ity and pressure fields will become more and more different
at time goes on, even though the statistical properties of

the two fields will still be (nearly) equal. To a worker
in turbulence, particularly an experimenter, this does not
seem odd - but the issue of instarxtaneous versus statisti-
cal predictability has attracted a lot of attention in chaos

studies, and perhap_ our intuition about the Navier-Stokes
equations may be put on a firmer footing. Deissler ts re-

views applications of chaos studies in fluid dynamics; for
a popular introduction to chaos studies in general, see the
book by Gleickte; and see also, of course, the new inter-
disciplinary journal _Cha_'.

11. Conclusions

In this paper, we have gone all the way from very basic

questions of turbulence theory to the important practical
question of the reliability of turbulence models, and then
ended in chaos. The fallacies that we have discussed do not

necessarily form a coherent story, but I think it can be said
that most of them fall into the general category of wishful
thinking - the hope of finding simple solutions to a difficult

problem. I will end with one of my favorite quotations,
from H. L. Mencken, _to every difficult question there is a
simple answer - which is wrong".
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364---365] Z)ampi,_y of Vibration,s in a SphericaZ Vessel 651

It is to be noticed that the ratio of (8) to (12) is of the order J(o,c[,,), numerical factors

bums omitted. In all cues to which our approximations apply this ratio is large, so that

the radial vibrLtioua are much more slowly extmfnlthed, so far u vumvsity alone is con.

cemod, thLn rhone which correspond to valu¢_ of n greater tha_ 0. This is readily accounted

for. Io the latter modes the condition that there is to be uo slipping of the fluid in contact

with the ve_el tmplies & relative|y [treater amount of distortion of the fluid e]emenm, and

consequent, d.issipation of energy., in the superficial layers of the _'_.

The method of the dissipation function, which wa_ applied in Art. 348 to the cue of

water wav_ m_ht be treed to obtain the result (12) for the f_dia/vibrations, but would

lead to an arron_aus r_ult/or _ _>0, sines the underlyin_ assumption that the motion is

only sightly modified by the friction is violated at the boundary.

In the g_vcet radis, I vibration we have ]ca - 4.493, whence

= .0743 _.
w

In the case nl air at 0° C. thhl makN r = .560 I*,

TurbulentMotion.

365. It remains to call attention to the chief ou_tanding dit_culty of
our subject.

It has already been pointed out that the neglect of the terms of the
second order (ubuf_z, &c.) seriously limits the application of many of the
precc4mg results to fluids possessed of ordinary degrees of mobility. Uuiess
the velocities, or the liueax dimensions involved, be very. small the actual
motion in such cases, so far as it admits of being observed, is found to be

very different irom that represented by our formulae. For example, when
a solid of 'easy' shape moves _tu-_ugh a liquid, an irregular eddying motion
is produced in a layer oi the fluid next to the solid, and a trail of eddies is

leh behind, whilst the motion at a distance laterally is comparatively smooth
and uniform.

The mathematics] disability, above pointed out does not apply to cases
of recCi_i1_earflow, such as have been discusae4 in Arts, 330, 331 ; but even

here observation shews that the types of motion investigated, though always
theoretically possible, become under certain conditions practically unstable.

The case of flow through a pipe of circuJar section was made the subject
of a eareiui experimental study by Re.caoldst, by means of _aments of
colo_tred fluid introduced into the stream. So long as the mean velocity
(wo) over the cross-section falls below a certain limit depending on the radius
of the pipe and the nature of the fluid, the flow is smooth and in accordance

• This Art. is derived with s];ght alteration fi, om a p6per cited on p. 636.

"An gxpcameutal Iav_U_atio_ ¢[ the Ch_cumstan¢_ _hich determine whether the

Motion d Water shall be Du, tct or Sinuous, and of the Law of Resistance in Parallel Ch&n_eh."

phil._a_.t.e_v.p. 93_(188_)[Papc_#.t. il p. Sl]. Forahistoriea]aceountolthe_rehca

and parti_ anticipations of other wrlte_ see KnJhb_, Pv_..qmy. Boc...V._.W.t. zxxi. p. 314
(1fl97). l_Jm-enes is made in pactieuht to Hagen, _zeL Abe. 1854, p. 17.
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Abstract

The e v method for predicting transition onset is an am-

plitude ralio criterion that is on the verge of full matu-

ration for three-dimensional, compressible, real gas flows.
Many of the components for a more sophisticated, absolute

amplitude criterion are now emerging: receptivity theory,
secondary instability theory, parabolized stability equa-

tions approaches, direct numerical simulation and large-

eddy simulation. This paper will provide a description of

each of these new theoretical tools and provide indications
of their current status.

1 Introduction

Robust tools for predicting the location of the onset of

transition in boundary layers on aerospace vehicles have

obvious technological importance. For practical engineer-

ing purposes one desires a prediction tool which is quan-

tatively and not just qualitatively correct: the issue is not

whether transition occurs but where. At present transition
prediction tends to be based on simple correlations, such

as erossflow Reynolds number or Ree/M; modified one-

or two-equation turbulence models which seek to trans-

late the freestream turbulence level into computations of

laminar-transitional-turbulent flow; and linear stability

theory.

The pioneering work of Smith & Gamberoni [1] and Van

Ingen [2] introduced an empirical method for estimating
the location of transition onset based on an amplitude ra-
tio criterion. This tool has come to be known as the et¢
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method or the N-factor method. The next level of tran-

sition prediction methodology is likely to involve an ab-
solute amplztude criterion. In order to achieve this goal,

many more physical effects must be taken into account

and more analysis tools must be utilized.

The seeds of transition are the disturbance environment

in which the vehicle operates. Transition is born by the

receptivity process in which the background disturbances

are incorporated within the boundary layer as linear insta-

bility waves. It is nurtured by a relatively long region of
]inear instability growth. Once secondary instability ef-

fects develop, they induce rapid growth, and at a suffi-

ciently high amplitude the nonlinear regimes are entered

and transition commences, as signified by, say, the skin
friction or heat transfer rise.

Characterization of the disturbance background is a pre-

requisite for an absolute amplitude criterion. Both ampli-

tude and spectral information are required. This is nec-

essarily an experimental task and will not be addressed

further in this paper.

The theoretical and computational tools which can now

be brought to bear on the transition problem include

Receptivity Theory, Linear Stability Theory (LST), Sec-

ondary Instability Theory (SIT), Parabolized Stability

Equations approaches (PSE), Direct Numerical Sinmla-

tion (DNS), and Large-Eddy Simulation (LES).

Receptivity theory is a very active area of current re-
search. The essential problem is that the freestream dis-

turbances often have much longer length scales than the
instability waves in boundary layers. Therefore, the incor-

poration of background disturbances into boundary-layer
instability waves requires a wavelength conversion mecha-

nism. A variety of linear and asymptotic techniques have

been applied to this problem. We refer the reader to [3]-[8]
for some recent work in this field. The latter two articles

are particularly concerned with compressible flow.

This paper furnishes a brief description of the remainder



of thesetoolsandprovidesexamplesof recentwork.We

shall limit ourselves to illustrating these methods for su-

personic flows, and shall highlight some recent results from
the theoretical and computational transition program at

the NASA Langley Research Center.

2 Governing Equations

Although results will be presented here for flat plates,

cylinders and cones, the equations and notation will be

given just for the flat plate. See [9] for the appropriate
equations for the more general situation.

3 Linear Stability Theory

The starting point for these analysis tools is, of course, the

compressib]e Navier-Stokes equations. In dimensionless
form the equations for a thermally and calorically perfect

gas are

Op O(pu_)
+ - 0

Ot 0_:_

Oa# O(ukuf) 10p 1 Octet
_+ _ -- ___+
Ot Ozr p bzk p Re Ozt

cgp 01, Ou_ _ 1 Oq_. "_I0-7+ + + *

-_.'d_p = pT, (1)

where

2 bum (_ Ouk Ou_ )

is the viscous stress tensor,

OT
q, = (3)

oxk

is tile heat flux, and

O _d lc

¢ = (4)

is tile viscous dissipation. The Reynolds number is de-

noted by Re, the Prandtl number by Pr, the Mach num-

ber at the boundary-layer edge by Me, and the ratio

of specific heats by "t. (For all the examples in this

paper 7 = 1.4.) In these equations p is the density,

u = (ul, uz, u3) = (u, v, w) the velocity, p the pressure,

and T the temperature. We shall denote the solution vec-

tor by q = (p, u, v, w, p). The coordinate system is chosen

so that x - (z!,xz,z3) = (z,y,z), where z, y, and z are

the streamwise, spanwise, and wall-normal coordinate di-

rections respectively.

In this paper, most dependent variables are normal-
ized with respect to their boundary-layer edge values; p
is scaled by " "_p,u, . Distances are scaled by the variable

L* = (v;z*/u',) 112. The superscript. * characterizes a di-

mensional quantity, the subscript e indicates a value at the

edge of a boundary layer, u is the streamwise velocity, and
v is the kinematic viscosity. The viscosity, p*, is assumed

to be given by the Sutherland formula.

The techniques of compressible linear stability theory

are quite well know; see, for example, [10]. The starting

point is a laminar mean flow, q0- In most cases an approx-

imate mean flow is utilized, e.g., a quasi-parallel solution
of the boundary-layer equations. One must then imagine

that an appropriate forcing term has been added to Eq.

(1). See [11] for a recent discussion. The total flow field,

q(x, t), is written as

q(x,t)=qo(z)+A(ql(z)ei(a_+_-_O+c, c.). (5)

The streamwise and spanwise wave numbers are denoted

by a and 3, respectively, and w is the (temporal) fie-

quency. The complex amplitude function, ql(z), deter-
mines the structure in the wall-normal direction. The

compressible Navier-Stokes equations are then linearized

about the mean flow to first-order in the amplitude A.
When combined with appropriate boundary conditions, an

eigenvalue problem results.

The spanwise wavenumber is invariably taken to be real.

In temporal theory, a is real and w is the (complex) eigen-

value, with w the spatial growth rate. In the spatial con-
cept, w is rea.1 and a is the eigenvalue, with -_i the spatial

growth rate. In many cases the simpler temporal theory

is applied, and the spatial growth rate approximated by

-ai = wi/cg, where cg is the group velocity of the wave.
The linear instability is referred to as the priraargl insta-

bility.

Some recent developments for compressible flow include

incorporation of non-parallel effects through multiple-scale

techniques [12], real gas effects [13], proper shock-wave

boundary conditions [14], and clarification of some issues

regarding propagation of three-dimensional waves [15].

The N-factor method is applied by first computing the
laminar mean flow past the body of interest and then

applying LST to that flow. For a given frequency, w,
the streamwise location at which a wave first beeornes

unstable, x0, is i ::.ntified and then the spatial growth

rate is integrated downstream to produce the N-factor:

N(w) = f[o(-Oi)dx'. (Note that if the amplitude of the
instability at x0 is denoted by A0, then the amplitude at

x is given by A/Ao = eN(_'); thus, - e N(') measures the am-

plitude ratio.) This calculation is performed for a range of
frequencies, and for each x, the maximum over w, denoted



byjust N, is taken.

The estimate of transition onset, is based upon an em-

pirical correlation between N and the location of transi-
tion. The N-factor method has had a surprising degree of

success, even considering its limitations, such as inapplica-

bility to flows in a high disturbance background for which
the linear instability regime is "by-passed". The N-factor

method has matured to the point at which an analysis ca-

pability is imminent for transition estimation across the
speed range (including real gas effects) and for arbitrary

steady three-dimensional mean flows.

The computer requirements for solving a single LST

eigenvalue problem are inconsequential. Even application
of the N-factor method to a three-dimensional mean flow

requires only on the order of an hour of supercomputer
time. However. a non-trivial related task is computa-

tion of an accurate mean flow. LST requires accurate

(and oscillation-free) mean flows and this is a far more

stringent requirement than is customary in conventional

steady-state CFD. This can take many tens of supercom-

purer hours for a three-dimensional configuration.

4 Secondary Instability Theory

Secondary instability theory picks up where LST leaves

off. In SIT one includes some weakly nonlinear (and three-

dimensional) effects. One considers the linear stability

with respect to secondary disturbances of a base flow com-

prised of a laminar mean flow (assumed locally parallel)

modulated by a small (but finite) amplitude primary dis-

turbance. SIT is now well-established for incompressible

flow. See Herbert [16] for a thorough review of the subject.
In recent years it has been extended and applied to com-

pressible boundary layers in [17], [18], [19], and [20]. Here

we review Some of the developments discussed in [20].

The frequency, wavelength, and shape of the primary

disturbance are obtained using LST. The primary wave

is assumed to have no growth during the evolution of the

secondary disturbance. In a Galilean frame, z + = z - c,.t,

moving with the phase velocity, cr, of the primary wave,

the total flow variable, q, can be written in the Floquet
form

oo

+ • :,,a_A.z+ --

q=qb+¢_{ ea'e'_"e'_2Ve'"2 E q_a'(z)eUa'x+}'

j _--cx_

(6)
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Figure 1: Variation of % with B when M_ = 1.6. Funda-
mental at .4 = 2.9%. Subharmonic at .4 -- 1.5%.

is defined so that it corresponds to the maximum value

of the perturbation mass flux. The equations governing

the secondary disturbance are obtained by linearizing Eq.

(1) about the modulated base flow. The discretized dis-
turbance equations are converted into a complex algebraic

eigenvalue problem for a or "t and their associated eigen-

functions. In temporal theory, 7 = 0 and a :f: 0 is the

complex eigenvalue to be determined. In the spatial con-

cept, we write o" = "yc, in Eq. (6) and solve for 7 as the

eigenvalue [16]. The temporal and spatial growth rates are
given by the real parts of a and 7, respectively. The detun-

ing parameter, h, defines the type of secondary instability.

The subharmonic modes are given by h = 1, while the

fundamental.modes correspond to h -- 0. In practice the

sum in Eq. (6) includes from 2 to 5 modes.

As one example, consider the boundary layer ovei" an

insulated flat plate at Mach number Me = 1.6, Reynolds
number Re - 1050, Prandtl number Pr -- 0.72, and

temperature T_ = 2160 Rankine. The primary wave

is slightly damped, and is located near branch two of

the neutral stability curve with al = 0.1471 and F -

106 x w,/Re = 82.6. For clarity, the secondary growth

rate obtained from the temporal theory, which has been

converted to a spatial growth rate by using the transfor-

mation 7r = a,/c_, is termed the "transformed-spatial"

growth rate. In many cases of interest both the dominant
fundamental and subharmonic travel synchronously with

the primary, i.e., 7i = 0.

In Fig. 1, the secondary growth rate is plotted

as a function of the normalized spanwise wavenumber

B - 10a x 132 /Re. (For constant boundary-layer

where qb is given by Eq. (5). Hereafter, the subscripts 0, ::edge conditions, the parameter B signifies a wave of fixed

b, 1, and 2 refer, respectively, to the laminar mean flow, spanwise wavelength as it propagates downstream.) The

the modulated base flow, the primary disturbance, and the "transformed-spatial" growth rate agrees well with the

secondary disturbance. The primary wave amplitude, A, (true) spatial growth rate. The most amplified subhar-
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monic disturbance consists of a pair of oblique waves trav-

eling at equal and opposite angles at about 700 to the
mean-flow direction. The most unstable fundamental dis-

turbance is comprised of a stationary mode, which repre-

sents a spanwise periodic distortion of the mean flow, and

a pair of oblique waves propagating in opposite directions
at about 570 to the mean-flow direction.

Figure 2 depicts the typical catalytic effect of the pri-

mary amplitude on the growth rates of the secondary dis-
turbances. The spanwise wavenumbers, B, of the sub-

harmonic and the fundamental are 0.19 and 0.22, respec-

tively; these particular values of B correspond roughly to

the most amplified secondary disturbances. The subhar-

monte instability prevails over the fundamental instability

in an environment with a primary amplitude, .4, of less

than about 2.87c., while the converse is true for higher val-

ues of A. The transformed-spatial growth rates of the sub-

harmonic modes are almost identital to the spatial rates
for small A -- the former increasingly underpredicts the
latter as A increases from 1.5%,

The preceding behavior is expected, since the use of

temporal data to approximate spatial growth becomes less
accurate when the growth rate is relatively high. Still,

the transformation of temporal data to approximate the

spatial growth rates of fundamental resonance modes is

surprisingly accurate even for a primary amplitude as high
as 4%.

The second example, given in Fig. 3, corresponds to a

laminar boundary layer on an insulated 7-degree half-angle

sharp cone at 3Ie = 6.8. The parameters are Re = 1939,
T, = 1280 Rankine, Pr = 0.70. The primary distur-

bance is axisymmetric and is of the "second mode" type

with al = 0.2788 and F = 135. The two sets of cal-

culations also serve to contrast the secondary instability

arising from a first-mode primary (at Me = 1.6) with that

arising from a second-mode primary (at M_ = 6.8). Over

a range of Math numbers up to at least 6.8, subharmonic

secondary instability (h = 1) is found to prevail in a low

primary-disturbance environment. This is especially true

for high-speed flows. In particular, as illustrated in Fig.

3, no fundamental instability (h = 0) for M_ = 6.8 exists
even for a primary amplitude of 2.625%. In fact, both

the frst- and second-mode primary waves associated with

high-speed flows have been found ineffective in catalyzing
unstable fundamental resonance modes.

Recent developments in SIT include incorporation of

non-parallel effects (but only for for the evolution of the

primary wave) [17]. Ng i" Erlebacher [19] have developed

a fairly general capability which allows for oblique primary

waves (important at low supersonic Mach number, where

the most unstable primary is oblique).

SIT has greater computational requirements than LST
- the matrix eigenvalue problems which must be solved

are larger than in LST. Nevertheless, a solution can be

obtained in minutes on a supereomputer.

5 Parabolized Stability Equations

As a consequence of the rapid growth of the secondary

wave, man 5, harmonic waves, including the mean flow cor-

rection mode, are excited to large amplitudes, and eventu-

ally strongly non!inear effects ensue)the flow then becomes
transitional. Although SIT furnishes a guide to mecha-
nisms that may be present near transition onset, it does

not at present account for many non-parallel effects, and

it incorporates only the lowest level non-linearity.
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One efficient method which does incorporates both non-

parallel and non-linear effects is the parabolized stabil-

ity equations approach, first suggested by Herbert and

Bertolotti [21], [22]. The PSE method facilitates the so-

lution of the full partial differential equations for the dis-

turbances by employing a partial parabolization along the
dominant flow direction. In this approach, the disturbance

is decomposed into a wave part and a shape function part.

The elliptic terms are retained for the wave part, whereas

the governing equations for the shape function are parab-
olized in the streamwise direction. The parabolized equa-

tions for the shape function are then solved numerically by

a marching procedure. The wave properties are extracted

linear effects such as wave/wave interaction or secondary
instability can be simulated by the non-linear PSE.

To demonstrate the applicability of the PSE approach,

we present some of the results given in [24]. Linear
PSE calculations were performed for a Mach 1.6 flat-plate

boundary layer previously studied by EI-Hady [12]. The

frequency of. the disturbances is F = 40. Calculations

were performed for both 2-D and 3-D linear disturbances;

the wave angle for the oblique, 3-D waves was about 50%

The growth rate of the mass flow fluctuations from the

PSE calculations together with the multiple-scales results
are plotted along with the growth rates obtained by quasi-

parallel LST in Fig. 4. PSE results agree quite well with

those obtained from the multiple-scales approach. The re-
sults also indicate that for the first mode disturbance at

Mach 1.6, flow non-parallelism has more effect on three-

from a local analysis. Nonlinear terms are formulated as dimensional disturbances than on two-dimensional ones.

forcing functions for the corresponding linear equations. The non-parallel effect on oblique waves is qualitatively
Because the equation set contains non-parallel as well as very similar to that in incompressible flows, as found by

nonlinear terms, the PSE method governs the spatial evo-

lution of disturbances from the linear stage up to the tran-

sitional stage:

The PSE approach has been successfully applied to the

stability of supersonic two-dimensional boundary layers by

Bertolotti & Herbert [23] and Chang et al. [24]. In the
linear regime, the method provides a means to include non-

parallel effects due to the growth of the boundary layer,

which is ignored in traditional LST. Furthermore, non-

Bertolotti [21].

Compressible non-linear PSE computations for sec-
ondary instability mechanisms and the subsequent start
of laminar breakdown have also been demonstrated . The

flow is again a Mach 1.6 flat-plate boundary layer with a

primary disturbance frequency of F = 50. The free-stream

temperature is 540 ° Rankine and _he Prandtl number is

Pr = 0.71. Figure 5 shows the evolution of primary and
subharmonic disturbances for various initial amplitudes of
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the primary waves (the subharmonic anaplitudes are the
same for all three cases). The spanwise wave number of

the subharmonic mode is fixed at B = 0.053, which corre-

sponds to an oblique wave angle of 45 °. As can be seen, a
1.1% initial amplitude for the primary mode is enough to

trigger the secondary growth.

Non-linear PSE calculations were also performed for the

Figure 7: PSE wall shear of laminar and perturbed flows
for a 3I, = 1.6 fundamental breakdown.

Linear PSE computations (equivalent to non-parallel

LST) are quite cheap. Nonlinear PSE can compute up
to the skin friction rise in no more than an hour of su-

percomputer time. However, current numerica! techniques

same Mach 1.6 case but for a fundamental-type secondary for nonlinear PSE have computational requirements which

resonance. The initial amplitude of the primary wave is scale quadratically with both the number of span_se

again 3_ and that of the secondary is taken to be 0.0057c_. Fourier components and the number of temporal frequen-

The spanwise wave number is B = .152 (oblique wave an- ties reta!nedin the approximation. This means that PSE

gle of 60 ° for the secondary wave) and the primary wave computations for the later stages of transition and for tan-
frequency is again F = 50. The non-linear evolution of dora inflow and/or freestream conditions are exceedingly

the maximum rms amplitude of u' (a prime is used to de-

note the fluctuating part of a variable) is shown in Figure

6. Clearly, the presence of the primary 2-D and secondary
3-D disturbances results in wave resonance and strong sec-

ondary growth of the oblique wave. When the secondary
disturbance is amplified to about the same amplitude of

the primary wave, all harmonies are excited and the flow
becomes transitional. This is confirmed by plotting the

average wall shear in Figure 7. The computed wall shear

is only slightly above the laminar value for most of the

computational domain. (The PSE wall shear lies above

r
expensive.

The SIT and PSE tools that have been described up

to this point are oriented towards forced transition, i.e.,

transition characterized by.sharply defined frequencies.... as

might occur from specific forcing. The technolog!ca!ly in-

teresting problem is that of natural transition, for which

a broad range of frequencies is present. To capture the
nonlinear interaction between a wide range of frequencies,

DNS and LES are currently the most appropriate tools.

the laminar value right from the beginning because of the
relatively high initial amplitude of the 2-D primary dis- 6

turbance.) Eventually the wall shear departs sharply from

the laminar value, indicative of transition onset. Thus, the

PSE computation captures the skin friction rise, which is
one of the criteria for transition onset; accurate predic-

tion of its location is a prime goal of transition prediction

methods,

Direct Numerical simulation

Direct numerical simulation solves the time-dependent,

three-dimensional, nonlinear, Navier-Stokes equations

subject to prescribed initial and boundary conditions with-
out recourse to empirical models. A thorough review of

this approach has been given by Kleiser & Zang [25].
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When attacked as the total boundary-layer transition

problem - from receptivity through fully-developed tur-

bulence - the non-parallel, spatial formulation is certainly

more appropriate than the temporal approximation. How-
ever, DNS for the complete transition process is an exceed-

ingly expensive tool even for the low Reynolds numbers

to which it is of necessity restricted. Gilbert & Kleiser

[26] performed the first well-resolved simulation of the
complete transition to turbulence and this took several

hundred supercomputer hours for a temporal computa-

tion of forced incompressible transition. With somewhat

relaxed resolution requirements Rai & Moin [27] have re-
cently computed bypass transition for low-speed flow past

a flat plate. This required many hundreds of supercom-

puter hours and it remains to be seen what the require-

meats are for a well-resolved computation for this problem.

For the foreseeable future, both temporal and spatial DNS

have a role, but this tool ought to be applied selectively.

One role for DNS is the corroboration of simpler tools,
such as SIT and PSE. For compressible flows it has been

used to verify temporal SIT [19], [9], spatial SIT [20], and

some aspects of nonlinear PSE [24]. Given the algebraic
complexity of SIT and PSE, particularly for oblique pri-
maries, this role is a needed one to establish confidence in

them. (It also furnishes a stringent calibration of DNS.)

One comparison between spatial (but quasi-parallel)

SIT and DNS by Ng & Zang [20] was performed for a
fundamental type instability at Me = 1.6, Re = 613,

Pr = 0.70, and Te = 520 ° Rankine. The primary wave is a

2-D first mode with frequency F = 73. The subharmonic

secondary wave has spanwise wavenumber B = 0.1465.

The amplitude of the primary is chosen to be 6%, while

that of the secondary is 0.1%. Although the spatial DNS

code is designed for non-parallel flow, for comparison with
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Figure 9: Evolution of selected harmonics from DNS of
M_ = 4.5 cylinder subharmonic transition.

the quasi-parallel SIT theory the mean flow was con-

strained to be parallel by using a forcing function. The ini-
tial conditions consisted solely of the laminar mean flow.

At the inflow boundary, z" = z_ = u_L /v_, the flow

consisted of the mean flow plus the appropriate contribu-

tions from the linear and secondary eigenfunctions. The

physical domain consisted of 8 wavelengths of the pri-

mary wave, with "buffer domain" modifications [28] to the

Navier-Stokes equations in the last 2 wavelengths used to
ameliorate potential difficulties with the outflow boundary

conditions. (See [20] for details.) Figure 8 shows the span-

wise velocity component, v, at z = 0.26", where 6" is the

displacement thickness, and fl2y = 7r/2 after 10 periods of

forcing; this component is due solely to the secondary in-
stability. The agreement between the DNS and SIT results

is excellent, except, of course, in the buffer domain.

This computation utilized 12 points per streamwise

wavelength. For transition in high-speed flows the growth
rates of both primary and secondary disturbances are

lower than for incompressible flow. As a consequence on

the order of 102 wavelengths would be needed to follow the

primary/secondary stages from about the 1% level to the

skin friction rise. This is a prohibitive expense and argues
strongly for the use of simpler methods such as SIT and

especially PSE for routine application to the early stages
of transition.

The unique niche for DNS is the highly nonlinear, lami-
nar breakdown stage and the subsequent transition to tur-

bulence; for this the non-parallel effects appear to be less

significant than they are for the rather lengthy primary

and secondary instability stages. These early stages are

nowadays treated far more efficiently by SIT and PSE ap-
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proaches than by DNS. Indeed, the simpler theories can

well be used to set the stage for the DNS: LST selects the

dominant primary instability (and determines the relevant

streamwise scales); SIT and/or PSE select the dominant

spanwise scales and can be used to "jump start" the DNS

at fairly high disturbance levels.

This is tile approach that was taken by Pruett & Zang

[29] in their temporal DNS of transition in Mach 4.5 flow
past a cylinder. The primary disturbance was a second
mode and the secondary disturbance was of subharmonic

type. Due to the periodicity assumptions in the stream-

wise (z) and spanwise (y) directions, the dependent vari-
ables have Fourier series representations in these direc-

tions. A useful measure of the strength of a given Fourier
harmonic is

CEk_,%(t) = dk_dk, po(z)[fa_,,%(z, t)12dz, (7)

where tik_,k_ is the Fourier coefficient of the velocity cor-
responding to wavenumbers k_ and k_ (with respect to st

and/32, respectively;

dk = 2 - _ko (8)

accounts for some of the symmetries in the problem. The

quantity Ek,,k_ is approximately the kinetic energy of the

(k_, ky) mode.

Figure 9, taken from [29], summarizes the time evolu-

tion of the principal modes for the Mach 4.5 cylinder sim-

Figure 11: Cartoon of the precursor transition effect (top)

[30] and its manifestation in the spatially-reconstructed

Reynolds stress from DNS of .rvI_ = 6.8 cone subharmonic

transition (bottom).

ulation. (Time is reckoned in units of the period of the

primary wave.) Tile DNS proceeded through the stages

of primary/secondary instability then underwent weakly
nonlinear and strongly nonlinear stages, and finally com-

menced laminar breakdown. The stages cited above last

from 0-15, i5-35, 35-45 and 45-60, respectively. The sym-

bols on the figure are the predictions from LST and SIT

for the growth of the primary and secondary disturbances.

They are in good agreement with the DNS. One interest-

ing feature of this simulation is the prominence that the

(0, 2) mode assumes in the latter stages of transition. This
mode is not present in the initial conditions (nor in SIT)

and is generated by nonlinear effects. Additional DNS
have revealed that this mode plays an essential rote in the
final laminar breakdown.

Figure 10 shows the evolution of the skin friction, CI,
and the shape factor, H, for the Mach 4.5 cylinder tran-

sition. This simulation was stopped at about 60 peri-

ods because of strong gradients that even its million grid

points could not resolve. Indeed, the judgment of Pruett

& Zang [29] was that the resolution became questionable

after 55 periods. This resolution problem intensifies as
Mach number increases, and in a particular computation

may eventually manifest itself in negative values of some

of the thermodynamic quantities. This particular diffi-

culty does not arise for low-speed DNS. For compressible

flow the dilemma is that highly-accurate cen.tral-differe_ce

schemes do not have suffic!ent artificial viscosity to resolve

strong gradients at high Reynolds number, whereas C6n:
ventional upwind CFD schemes are so dissipative that they

corrupt the delicate physics of transition. An encourag,

ing recent development is the work of AtkinS [30]_ whlch-

demonstrated good results for a compressible free shear
layer transition using a fifth-order ENO scheme.

The shape factor plot suggests that the simulation
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a promising candidate.

has proceeded almost completely through the transition

process. Figure 11 presents the spatially-reconstructed
streamwise velocity fluctuations, as represented by the

Reynolds-stress component rn : --fiu'u', from a Mach

6.8 cone simulation [29]. These exhibit the so-called "pre-

cursor transition effect", sketched in the cartoon in the top

part of the figure, whereby the transition originates near

the boundary-layer edge and gradually propagates toward

the wall. This same effect is present in the DNS. Flow-

field visualizations presented in Fig. 12 demonstrate the
presence in the Mach 4.5 cylinder DNS of the "rope-like

structures" that have been observed in numerous experi-

ments ([31],[32], [33]). One of the more significant conclu-

sions of [29] was that the rope-like structures are actually

manifestations of SIT and not LST, as had long been sus-
pected.

A last sample of results from this DNS is presented in

Fig. 13. It illustrates the evolution of the turbulent kinetic

energy, k, and the turbulent dissipation, e, through the

transition region. This kind of information, supplemented

by detailed information on the key terms in the evolution

equations for these quantities, has the potential to lead to

substantial improvements in two-equation models for tran-

sitional flow. However, DNS (particularly spatial DNS) is

so computationally intensive that a less drastic, but still
effective, tool for exploring the later stages of transition

would be quite desirable. The following section describes

7 Large-Eddy Simulation

In large-eddy simulation the small scales of the flow are
modeled in terms of the large-scale flow. The Reynolds-

averaged Navier-Stokes equations, in contrast, model the

higher-order rnomenls in terms of the lower-order mo-

ments. In LES the flow variables are decomposed into

a large-scale (resolvable) component and a small-scale

(subgrid-scale) component. LES was originally developed

for turbulent flow (see [34] for a survey of the state-of-

the-art in LES), and, at least with the more established

subgrid-scale (SGS) models, some refinements have proven

necessary to handle transitional flow properly. In the tran-
sitional case one not only wants to have a model which

works well for the final turbulent state, but also one which

captures the primary, secondaTy and nonlinear stages cor-
rectly (without, for example, exerting excessive damping

of the instability waves), predicts well the location of tran-

sition onset, and makes good predictions from transition

onset through the transitional zone to the fully turbulent

state. Piomelli and co-workers ([35], [36], [37], [38]) have
led the effort to utilize DNS of transition to calibrate and

refine SGS models for this process. This work has to date

been confined to incompressible flow. In this section we
describe some recent developments for compressible tran-

sition modeling via LES.



Thelarge-scalefieldisdefinedbytilefilteringoperation:

Y(x) = f C'(x, x')5(x') Ix', (9)

where the integral is extended over the entire spatial do-
main and G = GxG2G_, where _i(xi) is the filter func-

tion in the ith direction. For the velocity and tempera-

ture, Favre filtering is utilized: av = _ + 5', where 5'

is the SGS part of 9v and the Favre filter is defined by

= pf'-"-/_. The sharp Fourier cutoff filter is chosen for

this work because of previous experience with this filter in

LES of incompressible transition ([35]).

The dimensionless governing equations for compressible
LES are

0_ c9(_) o
5-[+ 0x-----U=

o---i-+ o_, - Y_ + -YxT_,+ o_--7

Op Op _O_k 1 O_k

+_e 1_ +___M_I OQkox_ Op _ OF+ (r - 1)_kb-__ (v - z)_b-_ _

_M:_ = _. (i0)

The SGS stress tensor r}t and the SGS heat flux Qk are
I ~ I I

defined by rk__t= -_(fik u___fi_fit + u_5_ + uzu_ + u_uj) and

Ok = -_(fik7 _ - 5k7_ + u_7_ + 5_.T' + u_T').

There have been a number of SGS models proposed for

compressibl e LES ([39],[40], [41],[42]). Two of these mod-

els have been applied to the Mach 4.5 transition problem

discussed in the preceeding section.

The first SGS model considered is the SEZHu model

derived by Speziale et al. [40] for compressible isotropic
turbulence. This model has been chosen because there

are now available some extensive a posteriori comparisons

of its performance on compressible, isotropic turbulence

([44], [45]). Following the work of Piomelli et al. [46], only

the Smagorinsky portion of the SEZHu model is used with

the Fourier cutoff filter. (This filter is applied in x and y;

no filtering is applied in the inhomogeneous z direction.)
Hence_ the SGS stress model is of the form

1-

rk, = 2 CR:DF_ A 2 11;/2 (S_:,-"_Smrn6_:,), (11)

and the SGS heat flux is given by

CRDF-_ A ,II1/2 0T
Q_= _77_r _"-e _-_[, (12)

where

10

._t = (Ofi_/Ox_ + Ofit/Ox_:) /2 is the Favre-filtered rate-

of-strain tensor and II_ = S,n,_.bmn is its second invariant.
Cn is the compressible Smagorinsky constant, PrT is the

turbulent Prandtl number, and _ "- (..kx,.kyAz) 1/3. The

function F is an intermittency-like term that turns itself

on slowly in the transitional zone [35]. Eq. (13) represents

a Van Driest wall damping and z + indicates a wall-normal
distance made dimensionless by the wall shear velocity and

kinematic viscosity.

The second SGS model considered here is the structure

function model [43], which is based on a physical space
implementation of the concept of spectral eddy viscosity.

Some results for this model have been reported for a spa-

tial LES of a Mach 5 boundary layer [41]. The structure

function model is of the following form for the SGS shear
stress and heat flux:

1- ti
r_t = CROF-P :'XxV/-fl2 (x, Ax, Ay, t) x (S_ -- "_Smm _t)

04)

2, t "0_"CnOF-_Ax _/-ff2 (x, _z,
Q_ = P,'r ' v, )0--_ ' (15)

where

]L_"2 = ¼ (llu(._+_._,v,z,t)-u(x,v,z,t)tl _
+ [lu(x,y,z,t)-u(x-Ax, y,z,t)lJ 2

Az t) u(z,V,z,t)ll _
+ 7_u(llu(z,y+_y,z, -

+ Ilu(_,v,:,t)-u(x,v- ±u,.-,t)lt_)). (16)

Although neither Van Driest wall damping nor the inter-

mittency term were in tile structure function model as

used in [41], they were added here as they seem to furnish
better results.

The structure-function SGS model was tested a poste-

riori both with and without the "intermittency" function,

and a comparison is given in Fig. 14 for the primary and

secondary components. (In the latter case F = 1.) The

coefficients for these runs were CR = 0.06_ whic h is the

value recommended in [41], and PrT = 0.70. The LES

used 104 grid points, two orders of magnitude fewer than

the DNS. The original structure function model is clearly

far too dissipative in the early stages, whereas the modi-

fied model agrees very well with the high-resolution DNS.

In this respect these results are similar to those reported

in [35] for the original and modified Smagorinsky model
when applied to incompressible transition. The integral

properties are in quite good agreement with those of the

high-resolution DNS up to T = 55; they are summarized
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in Figure 15. Note that the computation reaches the fully
turbulent regime.

For the SEZHu model the nominal coefficient is Cn =

0.011 [44]. However, on the same grid as was used for

the previous LES computations this had to be increased

to Cn = 0.50 in order to compute all the way through
to turbulence. The reason for this is not entirely clear at

present. It might be that the larger value of the Smagorin-
sky constant serves to provide artificial viscosity needed to

stabilize the computation, or it might be due to the much

smaller length scales involved in second mode transition•

The later stages of the DNS suggest that for the turbulent
state the computational box, in wall units, was 240 in z

and 150 in y, as opposed to typical values from incom-

pressible flow of 2000 and 1000, respectively.

Kral & Zang [47] have performed some LES of a Mach

4.5 turbulent boundary layer with computational domains

closer to the standard incompressible sizes. Here they
found that reasonable results could be obtained with the

constants CR closer to the accepted incompressible values.

It appears that application of the dynamic eddy viscosity
concept [37] to this problem would be quite fruitful.

The potential of LES for transition is that it permits
computations through the transitional zone at an order of

magnitude or more lesser expense than for DNS. A discus-

sion of what sort of information can be reliably provided

by LES and DNS is given in [48]. For incompressible flow,
demonstrations are needed for spatial transition; for corn-

pressible flow, the role of the SGS viscosity needs clarifi-

cation: To what extent is it furnishing artificial viscosity

rather than serving its intended purpose of modeling the
physics?

8 Prospects

The past several years have witnessed many exciting de-

velopments in transition research, particularly for com-

pressible flow, that make an absolute amplitude criterion

for prediction of transition onset a tantalizing prospect.
Many of the components of such a methodology have been

discussed in this paper. LST technology is virtually com-

plete for real configurations. SIT is likely to be absorbed

within PSE. The scope of PSE needs to be vastly increased
and it would greatly benefit from a firmer mathemati-

cal foundation. DNS will no doubt undergo algorithmic
improvements and take advantage of increased computa-

tional power. LES will likely evolve through several gen-
erations of SGS model improvements.

The philosophy, not only for transition prediction, but
also for basic research into transition physics, ought to be

to apply to each stage of transition or to each physical

problem the most economical and revealing method in the

transition prediction toolkit.
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Abstract

The accurate prediction of laminar/turbulent
transition is one of the fundamental problems in

engineering fluid mechanics. There ig almost
unanimous consent that such a transition criterion

should come from stability theory. Linear primary
stability theory describes the initial stage of
transition, but falls short of predicting transi-
tion. Only in conjunction with empirical correla-
tions, the widely used en method is obtained,
which, however, lacks a solid physical base.

Three-dlmenslonal secondary instabilities are known
to play in important role in the transition pro-
cess. However, no use has been made so far of
secondary instabilities, instability interactions
or wave resonances to define a 'transition

location.'

The paper summarizes new attempts to identify
certain interaction and resonance phenomena within
the laminar-turbulent transition regime in two-
and three-dimensional boundary layers which are
associated with rapid structural and temporal
changes of fluctuations beyond their exponential

growths.

At first, a numerical bifurcation analysis for
Blaslus boundary-layer flow on a flat plate will
be presented. Using the parallel-flow approxima-
tion, two-dimensional, wave-like finite amplitude
solutions have been computed. This resulted in the
neutral surface of two-dimenslonal nonlinear

Tollmlen-Schlichtlng waves. The computation of
three-dtmenslonal secondary Instabil%ties for this

two-dimenslonal neutral surface led to an exciting
discovery: a direct l:l internal resonance between
amplified, phase-locked secondary instability modes
is possible. This implies a t • exp(ot) behavior

N9 3o
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for temporal amplification (o being the temporal
amplification rate). Varying the Reynolds number.
the amplification rate of this resonance point

changes from being damped (o < O) to being ampli-
fied (o > 0). The Reynolds number corresponding to
Lhe cross-over point appears to be related to the
experimentally observed transition Reynolds number
in a low-disturbance flow. Therefore, this reson-
ance would not only explain the explosive start of
transition but also a physically satisfactory cri-

terion for transition prediction without recourse
to empirically determined constants.

On the other hand, for three-dlmenslonal bound-
ary layers, the dominating role of crossflow vor-
tices is well-known. Nevertheless, very little Is
known about their interaction wlth fluctuations

giving rise to spatial distributions of their rms-

values, Such theoretical investigations of pos-
sible secondary instabilities of a three-dimen-
sional boundary layer accompany a basic transition
experiment, which is being performed at the DLR in
G6ttlngen. Primary stationary and secondary non-
stationary disturbances are used to model the mean
flow and the fluctuations of a measured (quasi-)
saturation state. The analysis is based on a
Falkner-Skan-Cooke approximation of the undisturbed
flow. A secondary stability approach selects the
proper waves amongst the spectrum of amplified
disturbances In order to model the dominating

interactions. Good agreement of the secondary
stability model with this experiment is obtained,
especially concerning the spatial distribution of
the rms fluctuation. However, so far a striking
change of the vortex pattern due to secondary
instability has not been observed for three-
dimensional boundary layers.





Abstract

The en-method is employed wlth the spatial
ampllflcatlon theory to compute the onset of tran-

sition on a swept wing tested in transonic cryo-
genic flow conditions, Two separate elgenvalue
formulations are used. One uses the saddle-polnt

method and the other assumes that the'ampllflcatlon
vector is normal to the leading edge. Comparisons
of calculated results with experimental data show

that both formulations give similar results and
indicate thai the wall temperature has a rather
strong effect on the value of the n factor.

I. Introduction

THREE-DIMENSIONAL COMPRESSIBLE STABILITY-
TRANSITION CALCULATIONS USING

THE SPATIAL THEORY

by
R. Nlethammer* and D. Arnal**

ONERA/CERT, Toulouse, France
and

V. de Laharpet, H. H. Chen++ and T. Cebecl +++

California State University, Long Beach

between the elgenvalues a, ), . and R. To predict
transition for example, in spatial amplification
theory, . and R are prescribed, so two new rela-
tions between = and ) are required before the solu-

tion of the linear stability equations can be
obtained.

In the absence of leadlng-edge contamination
and G6rtler instability, It is well known that
transition on swept wings may occur either due to

strean_vlse instability (related to the properties
of the streamwlse velocity profile u) or cross-
flow instability (related to the properties of the
cross-flow velocity profile w). Since the

u-proflles look llke Falkner-Skan profiles, the
strean_vlse instability Is similar to that of a
two-dimensional flow and leads to turbulence In

flows with positive pressure gradient. On the

other hand, the development of a cross-flow pro-
file Is characterized by an inflectional instabil-

ity that can induce transition In flows wlth a
negative pressure gradient.

In order to design new aircraft wings, one must

be able to predict transition on swept wings. The
most popular method for predicting transltion Is
the en-method, which was Inltlally developed for
two-dlmenslonal flowsl, 2. Thls method Is based

on the solution of the Orr-Sommerfeld equation

uslng either temporal or spatial amplification
theory. In either approach the integrated ampll-

flcatlon rates A/A o of the unstable frequencies
are determlned, and transltlon Is computed on the

assumptlon that it occurs when the ratio A/A o of
the locally most unstable wave reaches a critical
value en, wlth n between 8 and lO for a low dls-

turbance envlronment.

In the extension of thls method to three-

dimensional flows, both temporal and spatial
amplification theories can again be used. In the
former case, the eigenvalue problem involves five
scalars a, ), "r, "i and R and In the latter case

It involves slx scalars at, 61, Br, )I, w and R.
In both approaches, the solution procedure Is con-

siderably more difficult than its counterpart In
two-dlmenslonal flows because the nontrlvlal solu-

tion of the linear stability equations In three-

dlmensional flows provides only two relations

%N 9 1
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In spatial theory, the introduction of an addi-
tional scalar in the dispersion relation makes the

problem more difficult: the amplification rate vec-
tor A is no longer a scalar; It Is a function of

both 61 and St. As a result, a new relation is
needed In the elgenvalue formulation.

In this paper we consider two completely dlf-

ferent elgenvalue formulations and compare their
predictions with measurements. The first formula-
tion is based on the wave packet theory (saddle-

point method) and the second is based _n the as-
sumption that the amplification vector A Is normal
to the wlng leading edge. The experimental data
correspond to measurements obtained at ONERA/CERT
for a transonic swept wing. The tests have been
conducted in a cryogenic wind tunnel at very low
stagnation temperatures.

The following section describes the calcula-
tion method employing both elgenvalue formulations.
Results are presented In the third section and the

predictions of both methods are compared wlth mea-
surements. The paper ends wlth a sumMry of the
more important conclusions.

2.0 OescrlDtlon of the Computailonal M@ihodl

The compressible stability equations and their
boundary condltlons-are well known and are given
In several references, see for example Ref. 4.

With the parallel flow approximation, they can be
wrltten in the followlng dlmenslonless form:

Contlnulty:

M _ _ M _ M

l(6u + _w- _)p + p[_+ l(6u+ Cw)] + _v - 0

*Visiting research student from MOnchen University, Germany
**Research engineer
+Visiting Research student from ENSAE, Toulouse, France

++Assoclate Professor
++fProfessor and Chairman

(1)

To date, most problems of the three-dlmenslonal

transltlon problems employing llnear stab111ty
theory have been treated by using the temporal

theory. When R and _r are specified, the values of
and are not unlque, slnce they both are func-

tlons _I _ [6 = 6(_) and "i = "I())]. A possible
solutlon is to determine the wave number direction

= tan-l(_/6) for which _I Is maximum and inte-

grate _I along the group veloclt_ direction accord-
ing to Gaster's transformation _. Thls "envelope
method' is one of the approaches used In the COSAL
code developed by Mall .k_
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y = O, u - v = w = = 0 (6a)

=-

y + =, u, v, w, T-* 0 (6b)

The above equations can be expressed as a first-
order system by defining the following new vari-
ables with primes denoting dlfferentlatlon wlth

respect to y,

Z1 = =u + flW, Z2 = =u' + BW', Z3 = v, z 4 = pM2
X e

zs. ;, z6.÷,, z7. =w-;,, z8 . =w'-_u'
(7)

In terms of these new variables, Eqs. (l) to (6),
for a three-dimensional compressible flow can be
written as

_' = B_ (e)

where z = (z_, zp ..... ZA)T and B is a 8 x 8
coeffl_lent fnatrlx deflneO by

a •

0 1 0 0 0 0

b2l b22 b23 b24 b25 b26

b3l 0 b33 b34 b35 0

b4l b42 b43 b44 b45 b46

0 0 0 0 0 l

0 b62 b63 b64 b65 b66

0 0 0 0 0 0

0 0 b83 0 b85 b86

0 0

0 0

0 0

0 0
(g)

0 0

0 b68

0 ]

bs? b88

(4) with its nonzero elements given _n Appendix i.

: : ,=



The solution of Eq. (8) subject to the boundary
conditions given by

y = O, z1 = z3 = z5 = z 7 = 0

(10)

y _ ®, Z1. z 3, z5. z 7 _ 0

can be obtained _lth two separate etgenvalue formu-

lations as described in the following two subsec-
Lions, 2.1 and 2.2.

2.1 Elgenvalue Formulatlon Based On the Olrectlon
of th e Amplification Vector (ONERA/CERT Method)

The basic assumption of thls method, first
proposed by Hack,' ls that on a wing wtth x and
z denoting the coordinates normal to the leading
edge and spanwtse direction, amplification only
occurs tn the x-direction and not In the spanwlse
direction; that Is,

_1 - o (11)

Thts assumption, formulated for an Inftnlte swept
wing, reduces the number of unknown elgenvalues In
the spattal theory from stx to five. Wtth w and
R given In the transition predtctlon problem, the
unknown elgenvalues correspond to _1, _r and Br.
For an assumed _ r, the wave number a ls then calcu-
lated so that the ampltflcatlon rate o I can be
determined. Add_ttOnal calculation s a_e then per-
formed for different values of _r In order to
determine the maximum amplification rate. Thts
procedure, as In the saddle-point method, is
repeated for each x-station and the n-factor tn
the en-method ts calculated from

X

n = - I (=l)max dx (12)
X
o

for different specified frequencles. Here xo
corresponds to the x-station where the stability
calculations are initiated. Transition ts assumed
to occur for the frequency for which the locally
most unstable disturbance reaches a value of n
between 8 and 10.

and Is described In some detatl In Ref. 7. In thts
method the relatlonshtp between the two wave num-
bers = and _ Is not assumed but computed from the
requirement that a=/aB ls real. According to this
requirement, the wave orientation and growth dtrec-
tlon of the disturbance are given by

a_ Z (13)(a-_)o,R = -tanx = - x

where _ denotes the angle that the disturbance
makes with the x-axis, = and B are related by
Eq. (13) and the disturbance propagating along the
ray ls given by the two terms on the right-hand
slde of Eq. (13). The disturbances are damped tf
the amplification rate r deflned by

a=
r = =1 - Pl (_)w,R (14)

Is > O, neutral tf r = O, and amplified If r < O.
Once = and _ are computed with the constraints of
Eq. (13), the amplification rate ts obtained from
Eq. (14); addltlonal calculations are then made for
different values of a=/a_ so that new values of =
and _ are calculated to determine the maximum value
of F. Further details of the solutlon procedure
are given In Ref. 8.

3.0 Results ond Discussion

3.1 Experimental Conditions

The experimental data used tn our studies cor-
respond to lamlnar flow on a 15-degree swept
tapered wing. The chord ls 0.228m at the root and
0.145m at the ttp. The wing has a span of 0.39m
wlth an AS409 cross-section and a trailing-edge
sweep angle of three degrees. The height of the
hollows on the wing ls less than 0.05 mm (from
peak to valley) for a chordwlse extent of about 2
cm. In order to avoid the need to perform full
three-dimensional stability/transition calcula-
tions, the measurements discussed In Ref. 9 and
summarized tn Ref. 10, were carried out under
lnflntte swept conditions with the wtng having a
mean sweep angle of 12 degrees at an angle of
attack of 0.3 degrees. The computations were made
at a mean chord of 0.186m.

2.2 Elqenv41v_ Formulation Based on the $_ddle-
Point Hethod (CSC Hethod)

The Cebect-Stewartson-Chen (CSC) method was
first proposed and used by Cebect and Stewartson

Flgure 1 shows the Rach number distributions
measured at different Reynolds numbers for a free-
stream Rach number of 0.74 at two stagnation pres-
sures. As can be seen,'the Hach number distribu-
tion has =bumps • around x/c = 0.3 and 0.47 caused

|.e

He

(a)

UPPERSURFACE

 i--I .... II...........unNo. 71 9| =_ 4a io in

• JlIele ?._m o.|= II.N ll.•_ t*.J.L ll.IDo
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UPPERSURFACE

! =, _ !
xlc

Flg. 1. Rach number distributions for K= = 0.74, = • 0.3, and Pl = (a) 2.0 bar, (b) 2.5 bar.



by small hollows in the model. On the lower sur- o,o1=I
face, a smooth bend around x/c = 0.20 Is vlslble. I
These dlscontlnultles are common for all experl- 1ments and their effects on transition were part of o,_
the investigation conducted and discussed in detail

'in Ref. 10.
0,006

Figure 2 shows the variation of the experl- Cd
mental wall temperature distributions along the
chord. Each distribution is referenced to its o,_
temperature, Tlv, measured at the first thermo-
couple in the flow direction. The maximum relative
difference between the wall and freestream temper- o,_

ature is 5 degrees, which indicates that the influ-
ence of a nonadtabatlc wall on transition must be
considered. This includes the relative undulation o.o=
as wel] as the absolute wall temperature.

125
Ti= 134 K I

/%;""
mo -/,/" ./_ms

165 15_

lg
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Figure 3 shows the variation of £he drag coef-
flclent wlth Reynolds numbers at three stagnatlon Fig, 3. Variation of the drag coefficient Cd with
pressures and several stagnation temperatures, stagnation temperature T I and pressure Pl as a

Since the drag coefficient increases significantly function of Reynolds number Rc-

for a turbulent boundary layer, It can be used as

an indicator of transition. The evolution of Cd -_:-_,_,_*_ _ - _.... :_ : ,_ :.
was measured _- +h° cryogenic transonic wind tun- Add_tTonal studies are in progress for run 60,
nel, T2, at "0'NERA_CERT=for 'different stagnation _whic_ha_-a_stagnatton temperature 0F 134K, _nd a
pressures (1.7 to 2.5 bars) and different stagna- stagnation pressure of 2.0 bar. These studies will
tion temperatures (between 16S and 109K). The val- bereported separately. : "

ues of Cd were obtained from wake measurements.
Figure 4 shows the experimental transition

In the present study we consider two runs cot- locations for runs 42 and 60. The location of
responding to 42 and 79, with Run 42 having a transition was determined from the change of the
stagnation temperature of t45K and a stagnation wall temperature measured by thermocouples, along
pressure of 2.0 bar. The influence of higher temp- the chord, resulting from the different heat
erature at a higher pressure is examined with run _luxes for laminar a_d t_rbulent flow. For run
79, which has a stagnation temperature of 165K and 79, the location of transition was assumed_to be

a stagnation pressure of 2.5 bar. In both cases the same as that of run 42 because of the similar
we calculate only the upper surface of the wing. drag coefficient and Reynolds number (Fig. 3).
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3.2 C¢lcul@tlon} wlth the ONERA/CERT Method

A detailed discussion of the calculations for
the experimental work described in the previous
subsectlon Is presented in Ref. lO. In thls

subsection we present results for runs 42 and 7g

for Mach number dlstrlbutlons contalnlng 'bumps'
around x/c 0.3 and 0.47 caused by smell
hollows In t_e model and compare them wlth the

calculatlons employing the CSULB method In subsec-
tion 3.3. Studles are in progress for Mach number

dlstrlbutlons without bumps and will be reported
separately.

The boundary-layer and stability calculations
for run 42 were performed for an adiabatic wall
and specified wall temperature distributions at a
Reynolds number of 12.8 x 106. Flgure 5 shows
the predictions of the ONERA/CERT method for the
adiabatic wall case together with the measured #ach
number distribution (Fig. 5a) used In the boundary-
layer calculations for a stagnation temperature of
145K and a stagnation pressure of 2.0 bar. Accord-
tng to Fig. 4, the locatton of transition corres-
ponds to x/c = 0,47.

The calculated n-factors shown tn Fig. 5b were
obtained for seven frequencies which can be
classified in three groups: (1) the high ones from

t
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Fig. 5. Otstrlbuttons of (a) Math number, (b)
c_uted n factors, and (c) the _st unstable
direction _ of the disturbances for the adia-

batic wall temperature distribution in Run 42 for
the upper surface.



15 to 30 kHz, (2) the range from 9 to 15 kHz, and

(3) the low ones from 2 to 9 kHz. Beginning with
hlgh frequencies, the calculations indicate rather
strong undulations of n and of the wave directions

+m (Fig. 5c) along the chord, The undulations
of n increase wlth frequency and show a strong

dependence on the pressure gradient. Excluding

the region of hlgh rlse of Me (x/c = 0 to 0.06,
the following mechanism can be observed. A rela-

tlve low pressure gradient has a stabilizing
effect, whereas a higher, even positive pressure
gradient is destabilizing. This effect becomes

more and more distinct wlth increasing x/c. Look-
ing, for example, at the n-curve wlth frequency
30770 Hz, we can see that the relative low pressure
gradient between x/c = 0.06 and 0.2 leads to an
almost constant n. The increase of dp/dx between
0.2 and 0.3 leads to a strong rise of n. The
steeper Math number distribution frbm x/c = 0.3
to 0.41 leads to a restabllizatton. The process
is repeated as the pressure gradient chan_es again
significantly at x/c = 0.41 and 0.47.

Figure 6 shows the variation of the computed n
values obtained for seven frequencies at the mea-
sured transition location of x/c = 0.47. The max-

imum value of n Is around 4.8 for a frequency of
approximately 25 kHz. The computed value of n for
transition Is much lower than the value of n for

this cryogenic wlnd tunnel T2 of CERT which has a
freestream turbulence level of about 0.2_ and a
transition value of n between 7 and 8 based on

experiments performed at ambient flow conditions.

S

n

' ]
I

" Z

10000 30000 30000 40000
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Fig. 6. Variation of n as a function of frequency
at the transition point x/c = 0.47.

To investigate the influence of wall temper-

ature on the stability calculations, the following
studies were conducted for specified wall temper-
ature distributions. Figure ? shows that the
experimental wall temperature Is higher than the

adiabatic wall temperature and varies more along
the chord. Since a higher wall temperature makes

the boundary layer more unstable, it Is plausible
to assume that the stability calculations will
yield higher values of n than those corresponding

to adiabatic wall temperatures. ....._

Figure 8 shows the computed results for the
same two high and low frequencies studies previ-
ously. The characteristic shape of the curves has
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not changed and the previously discussed mechanisms
for the adiabatic wall temperature calculations are
still valid. However, In direct comparison with
the adiabatic case, it can be observed that the
results with high frequency (Fig. 9a) show a
remarkably higher n distribution for x/c greater
than 0.17 for the case of the experimental temper-
ature distribution while the n curves for the lower

frequencies are almost similar (see Fig. 9b). The
_m distributions for either case (see Ftg. lO)
show that the most unstable directions are inde-

pendent of the wall temperature.

Figures 11 to 13 show the results for run 79
at a chord Reynolds number of 13.4 x 106 . This
case essentially has the same drag coefficient and
Reynolds number as run 42. For this reason we
assume the location of transition to be at x/c =

0.47. o.o 0.1 0,2 0.3 x/cO.4 o:s o.a 0,7

Figure 11 shows the calculated n-factor dis' _ Fig' 11. Otstrtbution of computed n factors for
trlbutlon for an adiabatic wall temperature dis- adiabatic wall conditions In run 79.
trlbutton and Ftg. 12 shows the comparison of the
n-factor distributions for adiabatic and expert-
mental wall temperature distributions. As shown
In Fig. 13, the temperature differences between

adiabatic and measured wall temperatures for thls
run Is weaker than for run 42. As a result, the
distribution of n factors for both cases do not

differ much from each other although, as In run

42, the measured wall temperatures lead to higher
values of n than those obtained wtth adiabatic wall
conditions. It can also be seen that, while the
value of n at transition location, x/c , 0.47, Is
slightly over 7 for calculations performed with a
measured wall temperature distribution, it is
around 6.3 for adiabatic wall cqndtttons.
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We note from the above results that near the
leading edge (x/c < 0.10), all the unstable fre-
quencies are of the crossflow type. Further down-

wing. Similar detailed calculations have also been
performed for the same runs, including run 60,
using the CSC method described In subsection 2.2
and wlll be reported separately. In this subsec-

tion we shall present a summary of the predIctlons
of the saddle-polnt method of Cebecl and Stewartson
for the same runs, 42 and 79, by showing the dls-
trlbutlon of n factors at several frequencies. We

shall also present and discuss the procedure of
determining the frequencies used In the calculation

of amplification rates, which Is different than any
other method which employs a combination of linear
stability theory and e'n-method to predict tran-
sition. In fact, the studies conducted with this
method for Incompresslble flows on wings and bodies
of revoiutlon and recent studies In compressible

flows over modern transport and mliitarywings show
that the calculation of the critical frequencies

ls the most important aspect of the transition pre-
diction procedure using stability theory. The
critical frequencies originate in a very narrow
regions and require care and patience to compute
their magnitudes and locations.

The frequencies needed In transition calcula-
tions are computed from zarfs recommended by Cebecl

and Stewartson. / They essentially correspond to
neutral stability curves In _hree-dlmenslonal flows
and have the following properties,

a__a= real (15)
=I = BI = O, aB

In the saddle-polnt method, for given velocity

profiles obtained wlth the Inflnlte-swept boundary-

layer method of Cebect, the stability calculations
begin on the zarf where, with R known and a I, BI
zero, the elgenvalue problem consists of calculat-

Ing ar, Pr and w with the requirement given by Eq.
(13). Wlth the elgenvalues and disturbance angle

x of the zarf known at a specified x/c-locatlon
and wlth dimensional frequency specified, the calc-

ulatlons at the following x/c-statlon are performed
to obtain a and 6 again wlth the requirement that
aJap Is real. Thls elgenvalue procedure is then

repeated for different values of aa/aB or x to find
the value of x for which F Is maximum at each x/c-
station. Thls process Is repeated for each x/c-
station, and n Is calculated by evaluating the

integral

X

n .- I rdx (16)

stream, the most unstAbl_ direction of the high Xo

frequencies decreases, leading to a more or less
streamwlse instability. It Is Interesting to note
that thls streanwlse instability Is very sensitive Figure 14 shows the zarfs for run 42 for an
to small Mach number variations (hollows) as well adiabatic wall and measured wall temperature dls-

as to the wall temperature. By contrast, the most trlbutlons. As can be seen, the frequencies orlg-
unstable direction of the low frequencies remains Inate at nearly the same location (on a vertical
close to 90°: they correspond to a crossflow Insta- llne) and vary drastically one from another. Their

bllity which does not 'see" the hollows (the evolu- calculation requires care and patience. A paper in

tlon of the n-factor is monotonic). Thls Instabll- preparation wlll discuss our procedure for 9enerat-

ity Is also not sensitive to the wall temperature Ing them.
variations. Thts ts due to the fact that it is an • :_ .......... " :_
• Inflectional" Instability governed by an lnflec- Flgure 15 shows the computed n factqrs for the
tlon point located near the outer edge of the zarfs of Ftg. 14. The results show that for adi-abatic wall conditions, the maximum value of n for
boundary layer, experimental transition iocatton ts around 6,3; the

3.3 Calculations with _he CSC He_hod corresponding value for the measured wall temper-- ature Is 7.3. What Is more important, however, Is

A detailed description of the stability calcu- the fact that In the iatter case, the computed
latlons for runs 42 and 79 are given In the prey1- transition location agrees very well with the
ous sectton for the upper surface of the AS 409 observed location considering that the n-value fortransition In this tunnel lies between 7 and 8.
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Figure 16 shows the zarfS For run 79 with wall
conditions corresponding to adiabatic temperature
and Fig. 37 shows a comparlson between the zarfs
obtained under adiabatic and measured wall temper-
ature conditions. Again the steep rtse tn frequen-
cies at almost one x/c-|ocatton Is noted. The zarf
calculations were performed for a very flne x/c-
grid, since most of the frequencies _tart their
amplification In an interval of 1/lO00 _ of chord
around 0.015. Figure 16 also shows zarfs away from
the leading edge. These zarfs have low values of
Pr around 10-(, occur In an almost zero pressure
gradient region and do not lead to amplification
rates that grow significantly.

Figure 18 shows the computed n factors for run
79 with stability calculations performed for zarfs

_n Flg. il under adiabatic and meaYured wall temp-
erature conditions. For thls flow, the n-value Is
much higher than those In run 42. For an adla-
batlc wa11, it reaches a maximum value of around B
and a value of around g for the measured wall temp-
erature case. If we take the n value to be 7.5, a
mld-n value of the expected n-value range for thls
wind tunnel, then transition occurs at x/c = 0.46
for adiabatic wall conditions and x/c . 0.47 for
measured wail temperature conditions. This com-
pares well with inferred transltlon 1ocatlon of
x/c = 0.47.

Figures 19 and 20 show a comparison between the
calculated n-factors obtained with both methods,
wlth results of CSC corresponding only to the
disturbance that leads to transition. As can be
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seen, for x/c around 0.45, the calculations with 4.0 Concludtnq Rem_rk_
the C$C method indicate higher values of the _

n-factor. The calculations wtth the ONERA/CERT Based on the studies reported here and tn Refs.
method correlate the data with n between 6,5 and 7 9 and lO, the following two comments can be made.
while those of CSC with n between 7 and B. First, rather crude assumptions have been made In

lO
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the computations (infinite swept wing assumptlon
with a mean sweep angle and a mean chord). Second,

It Is possible that cryogenlc condltlons (tempera-
ture fluctuations) degrade the Flow quallty. This

could explain the reason why the ONERA/CERT method
calculates n-factors somewhat lower than those com-

puted for ambient temperature wlth the same stabil-

ity code. For stagnation temperatures lower than
those considered In the paper, ice crystals appear
on the model and trigger transltlon.
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Thispaper demonstrates how well the k-w.turbulence
model describes the nonlinear growth of flow instabilities
from laminar flow into the turbulent flow regime. Viscous
modifications are proposed for the k-to model that yield
close agreement with measurements and with Direct
Numerical Simulation results for channel and pipe flow.
These modifications permit prediction of subtle sublayer
details such as maximum dissipation at the surface, k _, y2
as y _ 0, and the sharp peak value of k near the surface.
With two transition specific closure coefficients, the model
equations accurately predict transition for an incompressi-

: ble flat-plate boundary, layer. The analysis also shows why
the k-E model is so difficult to use for predicting transition.

There has been renewed interest in development of
methods for predicting boundary-layer transition. Current
interest in vehicles such as the National Aerospace Plane
(NASP), for example, provides the impetus for developing
accurate transition prediction tools. Furthermore, because
hypersonic boundary layers rarely achieve momentum-
thickness Reynolds numbers large enough to sustain fully-
developed turbulence, even the post-transition region
generally exhibits nontrivial viscous effects. Consequently,
accurate low-Reynolds-number turbulence models are also
needed.

The standard approach is to view development of a
transition model and a low-Reynolds-number turbulence
model as two separate issues. The strongest argument in
favor of this approach is simply that all spectral effects are
lost in the time-averaging process used by turbulence
models. Tollmien-Schlichting waves, for example, cannot
be distinguished by a turbulence-model. Since a given
boundary layer is unstable to perturbations that fall in a
specific range of frequencies, conventional turbulence
models, which distinguish only magnitude and an average
frequency, can never be certain if a given perturbation will
actually cause transition. However, if we implement two
separate models, one for the transition region and another
for the developing turbulent region, achieving a smooth
joining of the two models' predictions presents an addition-
al complication.

This complication can be avoided if we view both issues:-
as low-Reynolds-number phenomena that can be addressed
in the context of a single model. The strongest argument
for this approach is that we can use the same model to
describe a smooth transition from laminar to fully turbulent
flow, including the transitional region. This approach is
plausible provided we restrict our applications to broad-
band transition-triggering disturbances.

The research of Wilcox, et air-6 provides a great deal of
support for the latter approach. Using a k-o_. turbulence
model and transition-specific, low-Reynolds-number modi-
fications, Wilcox simulated boundary-layer transition for a
wide range of Math numbers including pressure gradient,
surface roughness, surface heating and cooling, and surface

J
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mass transfer. The purpose of this paper is to build upon
the work of Wilcox, et al, taking advantage of recent Direct
Numerical Simulation (DNS) results in developing appro-
priate viscous modifications for the W/lcox_ k-to model.
The scope of this paper is confined to incompressible flows.

For incompressible turbulent fluid flow, the complete set
of equations that constitute the Wilcox k-to two-equation
model are as follows.

auj
-- = 0

axj

a a

+_ k
%%

= rij_- B*_k

% . ak.

% to %%

a ato

(])

(2)

(3)

(4)

?,j = 2/_S,i + r,j (5)

2

r u = 2/._rS,i - _ok6 u (6)

/*r = a*#k/w (7)

1%% aUj]
% = + ax, (8)

In Equations (1-8), t is time, x, is position vector, % is
velocity, # is density, p is pressure,/.t is molecular viscosity,
and _, is the sum of molecular and Revnolds stress tensors.
Also, _ii is the Kronecker delta, k is _e turbulence kinetic
energy, to is specific dissipation rate, r.,i is Reynolds stress
tensor, and/_r is eddy viscosity. The six paranleters a, a*,
_, _*, e and e* are closure coefficients whose values are
given below.

at* + ReT/Rk
a" = (9)

1 + Re.T/R k

5 ao + ReT/R- -i
a .... (a*) (10)

9 1 + ReT/P_



9 5/18+ (ReT/Ro)4

100 1+ (ReT/Ra)4
(11) a ° .au/8yl)_

-1 (22)

fl_ = 3/40, o* = o = 1/2 aa* (au/ay)2 1
(12) P_= -_ _ -

(23)

%* = d/3, a o = 1/10 (13)

Ra -- 8, Rk --- 6, R_ -- 2.7 (14)

where Re x is turbulence Reynolds number defined by

Rex = 0 k / (to/_) (15)

Section II explains in detail how the turbulence model
simulates transition, and justifies the form of the viscous
modifications. Section Ill explains why the most popular
low-Reynolds-number k-¢ models are unsuitable for pre-

There are two important observations worthy of mention
at this point. First, if the turbulence energy is zero. Equa-
tion (2i) has a well-behaved solution. That is, when k = 0,
the eddy viscosity vanishes and the to equation uncouples
from the k equation. Consequently, the k-_ model has a
nontrivial laminar-flow solution for _ Second, the signs of
Pk and Pto determine whether k and tz are amplified or re-
duced in magnitude. However, it is not obvious bv inspec-
tion of Equations (22) and (23) how the signs of these terms
vary with Reynolds number as we move from the plate
leading edge to points downstream. We can make the
variation obvious by rewri_g Eqtmfi0m (22) and (23) in
terms of the Blasius transformation.

dieting'transition. Section iV demonstrates how well the +_ _ .... +-.. : ..... -- .... Z--2_--_-:_:::_ ::;
model" performs for low-Reynolds-number channel flow Be_re we introduce tiae Blas_us tratidormation, we must
and for pipe flow. Section V includes transition predictions determine the appropriate scaling foL_ To do this, we
for an incompressible fiat-plate boundary layer. Section VI note that close to the surface of a flat p_te botmdarv layer,
presents a summary of and conclusions drawn from the the specific dissipation rate behaves according to 7 "

study.

II. Simulating Transition .with Turbulence
Fdodel Equattons

Turbulence model equations can be used to predict
transition from laminar to turbulent flow, although most
models predict transition to turbulence at Reynolds num-
bers that are at least an order of magnitude too low. To
understand why and how the k-<a modelpredicts transition,
consider the flat-plate boundary layer. For the k-tz model,
the incompressible, two-dimensional boundary-layer form
of the equations for k and to is as follows.

Ou 8u 8 _ 8u

-- = _y[(V+vT)_y ] (16)U_x+Vay

6v

to _-- as y --, 0 (24)
yZ

In terms of the Blasius similarity variable, _, defined by

= y / (vx/U..)½ (25)

where U,+ is freestream velocity, the asymptotic behavior of
¢aapproaching the surface is

6U® 1 ' _
to .... as _ --, 0 (26)

t_x _

Consequently, we conclude that the appropriate scaling for
to in the Blasius boundary, layer is given by

Ok Ok Ott,2. 8 8k
u-- + v-- = vr (-g-) t_'tok÷ [(v+o*vT) ]

8x 8y Oy _y _Y
(17)

VT = a*k/to

where u and v are velocity components in the streamwise
(x) and normal (y) directions, respectively, v is kinematic
molecular viscosity, and v T is kinematic eddy viscosity. We
can most clearlv illustrate how the model equations predict
transition by rearranging terms in Equations (17) and (18)
as follows.

U®

to = --W(x,n) (27)
x

where W(x,_l) is a dimensionless function to be determined

8 [(V+aVT) 8to as part of the solution. Hence, if we write the velocity in
B toe + _y _ ] terms of dimensionless velocity, F(x, vl), i.e.,

(18) u = U® F(x, tl) (28)

(19) 'the _net production per urdt dissipation terms become

8k 8k O Ok
u-- + v-- = Pk_*tok + [(V+O*VT) ]

8x Oy _y _Y

a* ,0F/an,:
Pk = 7. Re,(--7=---,, ) - 1 (29)

t_+ w

O - Oto
8_ Oto p_.¢. + [(V+VT ) ]

uox÷voy=

= aa* (OF/an,:
P_ _ Re, .----_----) - 1 + (30)

(20) Thus, both Pk and P¢0 increase linearly with Reynolds
number, Re,. From the exact laminar solution for le(T1)and
W(_) [the x dependence vanishes for the Blasius boundary
layer], the maximum value of the ratio of OF/an to W is

(21) given by

The netproduction per unit dissipation for the two
equations, Pk and P_ are defined by:

SF/an, 1

-W -)'" " (31)

Z

._=



Hence, as long as the eddy viscosity, remains small com-
pared to the molecular viscosity, we can specify the precise
points where Pk and Pro change sign. In general, using
Equation (31), we conclude that the sign changes occur at
the following Reynolds numbers.

(R%) k = 9.104 m
5"

t_
(Rex)o_ = 9. 104

With no viscous modifications, the closure coefficients 5,
a*, a and _* are 5/9, 1, 3/40 and 9/100, respectively.
These values correspond to the limiting form of Equations
(9-14) as Rex -* 0o. Using these/u/ly turbulent values, we
find (Rex) k = 8,100 and (Re060 = 12,150. Thus, starting
from laminar flow at the leading edge of a fiat plate, the
following sequence of events Occurs.

computation starts in a laminar region with(1) The
k= 0 in the boundary layer and a small freesrream
value of k.

(2) Initially, because Pk < 0 and Pco < 0, dissipation of
both k and _a exceeds production. Turbulence
energy is entrained from the frees(ream and spreads
through the boundary layer by molecular diffusion.
Neither k nor ¢_ is amplified and the boundary layer
remains laminar.

(3) At the critical Reynolds number, Rex, = 8,100,
production catches dissipation in the k equation.
Downstream of x_ k production exceeds k dissipa-
tion and turbulence energy is amplified. At some
point in this process, the eddy viscosity grows rapidly
and this corresponds to the transition point.

(4) k continues to be amplified and, beyond
Re, = 12,150 production catches dissipation in the co
equation, co is now amplified and continues growing
until a balance between production and dissipation
is achieved in the k equation. When this balance is
achieved, transition from laminar to turbulent flow
is complete.

Consistent with experimental measurements, the entire
process is very sensitive to the frees(ream value of k. There
is also a sensitivity to the frees(ream value of _ although
the sensitivity is more difficult to quantify.

Three key points are immediately obvious. First, k
begins growing at a Reynolds numbei of 8,100. By contrast,
linear-stability theory tells us that Tollmien-Schlichting
waves begin forming in the Blasius boundary layer at a
Reynolds number of 90,000. This is known as the mini-
mum critical Reynolds number. Correspondingly, we
find that the model predicts transition at much too tow a
Reynolds number. Second, inspection of Equations (32)
and (33) shows that the width of the transition region is
controUed by the ratio of _ to an*. Third. transition will
never occur if Poa reaches zero earlier than Pk- Thus,
oeettrrence of transition requires

an* < a*#t#* as Re r-* 0

This fact must be preserved in any viscous modification
to the model. The viscous modifications in Equations (9-
14), i.e., the dependence of a. a* and B* upon Rex. are de-
signed to accomplish two objectives. The most important

objective is to match the m/n/mum critical Reynolds
number. Reference to Equation (32) shows that we must
require

B*/a* --* 1 as Rex --* 0 (35)

A secondary objective is to achieve asymptotic consist-
(32) ency with the exact behavior of k and dissipation.

= _*k_ approaching a solid boundary. That is, we would
like to have

(33) k/y 2 -* constant, e/k _ 2v/y 2 as y --* 0 (36)

Close to a solid boundary, Wilcox 7 shows that the dissipa-
tion and molecular diffusion terms balance in both the k
and ¢oequations. The very-near-wall solution for _z is given
by Equation (24). The solution for k is of the form

k/y n _ constant as y --* 0 (37)

where n is given by

n = V2[1 + (1 + 24_*/#) ½] (38)

Noting that dissipation is related to k and ca by

e = t_*k_ (39)

we can achieve the desired asymptotic behavior of Equa-
tion (36) by requiring

a*/_ -* 1/3 as Rex --. 0 (40)

Requiring this limiting behavior as ReT "" 0 is sufficient to
achieve the desired asymptotic behavior as y --- 0 since the
eddy viscosity, and hence, Re x vanish at a solid boundary.

If we choose to have _ constant for all values of Re 1,
Equations (34), (35) and (40) are sufficient to detemune
the limiting values of a* and t_* and an upper bound for
as* as turbulence Reynolds number becomes vanishingly
small. Specifically, we find

m

c_* --, /U3 I as Rex --) 0 (41)B* --* M3

Wilcox. et all-4 make the equivalent of an* and a* in
their k-co: models approach the same limiting value and
obtain excellent agreement with measured transition width
for incompressible boundary layers. Numerical experimen-
tation with the k-co model indicates the optimum choice for
incompressible boundary layers is an* --*0.74_, or

as* --, 1/18 as Re T --) 0 (42)

Equations (9-14) postulate functional dependencies
upon Rex that guarantee the limiting values in Equations
(41) and (42), as well as the original fully turbulent values
for ReT'-, =.

The three coefficients Rs, Rk and R_ control the rate at
which the closure coefficients approach their fully turbulent
values. As in previous analyses based on the k-m modet?Z.9
we can determine their "values by using perturbation
methods to analyze the viscous sublayer. Using the well

(34) established procedure, we can solve for the constant in the
law of the wall B, by. solvin.. g the sublayer equations and
evaluating the following limit.

B = lim [u ÷ - 1£ny,] (43)
)'_= K



where u* = u/u_ and y+ = _y/v are standard sublayer
scaled coordinates. Also, K = 0.41 is K_irrmin's constant.
For a given value of R B and Rk, there is a unique value of
R._ that yields a constant in the law of the wail of 5.0. For
small values of R_ the peak value of k near the surface is
close to the value achieved without viscous corrections, viz,
_U(_*) _.. As R Bincreases, the maximum value of k near
the surface increases. Comparison of computed sublayer
structure with Direct Numerical Simulation (DNS) results
of Mansour, et al,0 indicates the optimum choice for these
three coefficients is as indica;ed in Equation (14). Section
IV presents a complete comparison of computed channel
flow properties with the Mansour, et al DNS results.

The only flaw in the model's asymptotic consistency
occurs in the Reynolds shear stress, r_v. While the exact
asymptotic behavior is r_. '_, y3, the model as formulated
predicts r_ "_,3"4. This dis'_epancy could emily be removed
with anottier viscous modification. However, results ob-
tained to date indicate this is of no significant consequence.
It has no obvious bearing on either the model's ability to
predict transition or properties of interest in turbulent
boundary layers. The additional complexity and uncertain-
ty involved in achieving this subtle feature of the very-near-
wall behavior of r_ does not appear to be justified.

III. Difficulties A_ng Use of the k-f

Given the information developed in Section II, it is a
simple matter to explain why little progress has been made
in predicting transition with the k-6 model, t' The primary,
difficulties can be easily demonstrated by focusing upon
incompressible boundary layers. If we use the standard
form of the k-e model Equations (17-19) are replaced by

U_x+V_yOk8k ____2 oyO Ok-- VT( - 6 +-:.--[(V+l/T/Ok) oy ] (44)

06 O_ _ ___u)2 62 O . 06
U_x+ v_y = C'_k vx(oy " C'2g+Tyt(V+VT/°')_y]

(45)

vr = Cuf, k: / e (46)

Values of the closure coefficients/functions C,_, C,,, C,_
f _ o k and o, differ amongst the various versions o_ this
m_odel. In the absence of viscous modifications, the stand-
ard values used are C,_ = 1.44, C,: = 1.92, Cu = .09, f, = 1,
ok = 1 and a, -- .769.

One critical difference from the k-_ model is obvious by
inspection of Equations (44-46). Specifically, ff the turbti-
lence energy is zero, _ must also be zero. We cannot simply
drop the eddy viscosity in the _ equation because of the
presence of k'in the denominator of the e equation's dissi-
pation term. The model does possess a laminar-flow solu-
tion for the ratio of e to k. That is, if we mak e the formal
change of variables

6 = C_ k _ (47)

and assume v T < < v, the following laminar-flow equation
for _oresults.

u _x + v ay (C,,-)f. ( - (C,2-l)C,,,_ + v _Oy2

2v Ok Oto
+ (48)

k 8y 8y

Equation (48) is nearly identical to the limiting form of
Equation (18) for VT/V --, O. The only significant difference
is the last term on the right-hand side of Equation (48).
Except close to the surface where k must be exactly zero,
this term is unlikely to have a significant effect on the solu-
tion for small nonzero values of k. However, in a numerical
solution, products of dependent-variable gradients are
generally destabilizing, andthe problem can only be aggra-
vated by having a coefficient inversely proportional to k.
This is not an insurmountable problem. However, estab-
lishing starling conditions is clearly more difficult with the
k-6 model than with the k-ca model.

Given the diverse nature of viscous modifications that
have been proposed for the k-¢ model '_ it is impossible to
make any universal statements about why a specific model
fails to predict realistic transition Reynolds numbers.
Perhaps the strongest statement that can be made is, no one
has approached the problem from the transition point
of view. Most researchers have sought only to achieve
asymptotic consistency and attempted transition predictions
only as an afterthought. We can gain some insight by
examining the net. production per unit dissipation terms for
the k and e equatmns that are analogous to Equations (29)
and (30), viz,

f, 8F/OTI,2

Pk = - 1 (49)

C,,fu .SF/ 8'].2

P_ = C_-_Re, (_)- I . (50)

On the one hand, without viscous damping, if we
assume Equation (31) is valid, we find (Re,) k = 8,100 and
(Re,)¢ = 10,800. Consequently, like the high-Reynolds-
number version of the k-ca model, transition will occur at
too low a Reynolds number.

On the other hand, because f_, C_, and Sometimes C i
are often permitted to be funct|ons of distance from the
surface and/or functions of ReT, we Cannot simply use
Equation (31). Furthermore, some modelers add terms to
the k and 6 equations in addition to damping the closure
coefficients. Each set of values for the closure coefficients
and additional terms must be used in solving Equation (48)
to determine the laminar-flow solution for ¢/k. While it is
clearly impossible to make a quantitative evaluation of all
variarits of the k-6 model, we can nevertheless make some
general observations.

=:

From the analy.sis of the k-co mendel, it is obvious that
havin_ f < I will tend t0 del-ay transition._ly all

gt , . • , .

mode_'ers _mplement an f. that will accomplish this end.
However, the modificat|_ons of Jones and Launder,_

opposite of what is needed and will have an undesirable
effect on both the onset of and the extent of the transition
region.

This discussion is not intended as an exhaustive survey of
the numerous low-Reynolds-number versions of the k-6
model. Rather, it is intended to illustrate how difficult it is
to apply the model to the transition problem. Given
enough additional closure coefficients and damping func-
tions, the k-_ model canprobably be modified to permit
satisfactory transition predictions. However, even if this is
done, establishing starting conditions will ultimately require
a solution to Equation (48). That is, to initialize the compu-
tatiom we must effectively transform to the k-co model.
Since this is the natural starting point, it seems illogical to
perform subsequent computations in terms of k and e,



IV. Turbulent Flow Applications

To achieve a complete description of the transition from
laminar to turbulent flow, we must be able to accurately
describe the flow in the turbulent regime. This is, after all
the primary advantage of using turbulence model equations
to describe transition. In this section, we examine channel
and pipe flow to demonstrate how well the low-Reynolds-
number form of the k-o model predicts properties of turbu-
lent flows.

Figures 1 and 2 compare computed channel-flow skin
friction, ct with the Halleen and Johnston _s correlation for
Reynolds number based on channel height, FL and average
velocity ranging from 103 to 10L The correlation is

cf = 0.0706 Re. W* (51)

As shown, computed ct differs from the correlation by less
than 3% except at the lowest Reynolds number shown
where the correlation probably is inaccurate. Figure 3
compares computed pipe flow cr with Prandtl's umv"ersal
law of friction, viz,

cf-V2 = 4 logt0(2 Re D crV2) - 1.6 (52)

Reynolds number based on pipe diameter. D, and average
velocity varies from 103 to 106. As with channel flow,
compuied ct falls within 5% of the correlation except at the
lowest Reynolds number indicated where the correlation is
likely to be in error.

For more detailed comparisons, we consider two low-
Reynolds-number channel-flow cases corresponding to the
DNS results of Mansour, et all ° and one high-Reynolds-
number pipe flow case corresponding to measurements of
Laufer t6.
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Figure 1. Incompressible channel flow with Re, = 180,
Re. = 5,590; o Mansour, et al; • Johnston Formula.

For purposes of identification, the three cases are re-
ferred to in terms of the parameter

Re, = u,R/v (53)

where u, is friction velocity and R is either channel half
height or pipe radius. Figures 1 and 2 compare various
computed profiles with the Mansour, et al DNS results for
Re, = 180 and 395, respectively.

Six different comparisons are shown in each figure,
including mean velocity, skin friction. ,_eynolds shear
stress, turbulence kinetic energy, turbulence energy produc-
tion and dissipation rate. For both cases, velocity, Reynolds
shear stress, and turbulence kinetic energy, profiles differ by
less than 7%. Most notably, for both Reynolds numbers,
the model predicts the peak value of k near the channel
wall to within 4% of the DNS value. Additionally, ap-
proaching the surface, the turbulence-energy production,
r_ aU/ay, and dissipation, _, are within 10% of the DNS
results except very close to the surface.

Figure 3 compares k-tz model pipe flow results with
Laufer's _6measurements at a Reynolds number based on
pipe diameter and average velocity of 40,000. As shown,
comp.uted and measured velocity and Reynolds shear stress
profiles differ by less than 8_c. As frith channel flow,
computed and measured turbulence kinetic energy differ by
about 5% including close to the surface where the sharp

epakoccurs. Note that. at this high a Reynolds number, the
rofile has a sharp spike near y = 0 and this feature is

captured in the computations. Except very close to the
surface, computed turbulence energy production and dissi-
pation differ from measured values by tess than 10%. This
may actually be a desirable result. That i_ some controver-
sy exists about the accuracy of Laufer's dissipation meas-
urements close to the surface.
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Figure 2. Incompressible channel flow with Re, = 395,
Re. = 13,750; o Mansour, et al: • Johnston Formula.
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V. Transition Applications

Figure 4 compares computed and measured transition
Reynolds number, Re 0. for an incompressible flat-plate
boundary layer. We define the transition Reynolds number
as the point where the skin friction achieves its minimum
value. Re'suhs are di_plaved as a function of freestream
turbulence intensity, 1-, defined by

2k_:
:e = :oo(-----)_/_

3U_ z
(54)

where subscript • denotes the value at the boundary-layer
edge. As shown, consistent with the data compiled by
Dryden, iv R_t increases a5 the freestream intensity de-
creases. Became to can be thought of as an averaged
frequency of the freest'ream turbulence, it is reasonable to
expect the predictions to be sensitive to the freestream
value of to. To assess the effect, the freestream value of the
turbulence length scale defined by % = kV2/ta has been
varied from .0018 to .1008 where 8 is boundary layer thick-
ness. As shown, computed Re 0 t values bracket virtually all
of the data. These predictions are markedly superior to the
preliminary efforts of Wilcox Is in developing tow-Reynolds-
number modifications for the k-to model.

Figure 5 compares computed width of the transition
region with measurements of Dhawan and Narasimha. 19
We define transition width, _ as the distance between
minimum and maximum skin-friction points. The comput-
ed width fails within experimental data scatter for
Rexl < 106, and lies a bit above the data for larger values.
Ax t is unaffected by the freestream value of to.
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Figure 4. Comparison of computed and measured variation
of transition Reynolds number with freestream turbulence
intensity; incompressible flat-plate boundary layer' _'
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Figure 5. Comparison of computed and measuredwidth of
the transition region for an incompressible flat-plate
boundary layer.

VI. Summary. and Conclusions

The primary objective of this paper has been to illustrate
how two-equation turbulence models, most notably the k-t_
model, predict transition. While the long-term goal of this
research is to develop a tr_ition model for all Math
numbers, this paper has focused on the case about w_c_
know the most, viz, incompressible flow. The low-Reyn-
olds-number modifications proposed not only facilitate
accurate transition predictions, but also yield reasonably
close agreement with DNS results for low-Reynolds-
number channel flow.

The degeneracy of the f equation inthe k-e model is a
major stumbling block that impedes successful application



tothetransitionproblem.Bytransformingthemodeltoan
equivalentk-¢_model,it would be possible to remove some
of the difficulties. After making such a transformation
however, there is little reason to transform back.

The applications presented in Sections IV and V indicate
we have formed a solid foundation for future low-Reyn-
olds-number and transition research.
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A Compressible Near-Wall Turbulence Model for Boundary Layer Calculations

Abs_ct

A compressible near-waU two-equation model is derived
by relaxing the assumption of dynamical field similarity between
compressible and incompressible flows. This requires
justifications for extending the incompressible models to
compressible flows and the formulation of the turbulent kinetic
energy equation in a form similar to its incompressible
counterpart. As a result, the compressible dissipation function
has to be split into a solenoidal part, which is not sensitive to
changes of compressibility indicators, and a dilatational part,
which is directly affected by these changes. This approach
isolates terms with explicit dependence on compressibility so
that they can be modeled accordingly. An equation that governs
the transport of the solenoidal dissipation rate with additional
terms that are explicitly dependent on compressibility effects is
derived similarly. A model with an explicit dependence on the
turbulent Mach number is proposed for the dilatational
dissipation rate. Thus formulated, all near-wall incompressible
flow models could be expressed in terms of the solenoidal
dissipation rate and straight-forwardly extended to compressible
flows. Therefore, the incompressible equations are recovered
correctly in the limit of constant density. The two-equation
model and the assumption of constant turbulent Prandtl number
are used to calculate compressible boundary layers on a flat plate
with different wall thermal boundary conditions and free-stream
Mach numbers. The calculated results, including the near-wall
distributions of turbulence statistics and their limiting behavior,
are in good agreement with measurements. In particular, the
near-wall asymptotic properties are found to be consistent with
incompressible behavior, thus suggesting that turbulent flows in
the viscous sublayer are not much affected by compressibility
effects.

1. Introduction

R.M.C. So, H.S. ZhangandY. G. Lai" _ 9 3 __/3 3Mechanical and Aerospace Engineering
Arizona State University

Tempe, AZ 85287-6106, USA /_" C)Z./_ _,

Therefoi'e, the postulate is not valid for hypersonic boundary z7 / _/
layers, where the Mach number is five or greater, and for flowsf+-
with strong pressure gradient effects, such as shock-turbulent-
boundary-layer interactions. The latter point was confirmed by
the studies of Wilcox and Alber [1] and Bradshaw [11] and led
to proposals to have the effects of pressure-dilatation correlation
modeled in the governing equations [12]. A more recent study
where density fluctuations are also considered has been given by
Speziale and Sarkar [13]. Besides these modifications, all
turbulent compressible flow modeling rely on incompressible
models.

Two sources of difficulties arise when incompressible
turbulence models are extended to compressible flows. One is
due to compressibility itself and another is associated with the
turbulence phenomena. In compressible flows, the governing
equations are coupled and temperature cannot be considered as a
passive scalar. As a result, all other thermodynamic variables
adopt new roles. Therefore, mathematically, compressible
flows cannot be considered as straightforward extension of
incompressible flows. Furthermore, pressure is only a force
term in incompressible flows and all disturbances propagate at
infinite speed. On the other hand, pressure also supports finite
velocity propagation of disturbances in compressible flows.
Other complications come from the variable mean density, which
contributes to increased non-linearity of the governing
equations, and the fluctuating density, which causes the closure
problem to become more difficult.

Density variation in a turbulent flow can come from
different sources. Some of these are: (i) isothermal mixing of
gases of different density, (ii) strong temperature gradient in a
homogeneous fluid, (iii) reactive flows and (iv) compressibility
effects in high speed flows. Each of these sources gives rise to
specific aspects that require modeling if the governing equations
are to be solved. This study makes an attempt to address the last
source; that is, the modeling of high speed compressible
turbulent flows.

Most studies on compressible turbulent flow modeling
[1-9] invoke the Morkovin postulate [10] to justify the direct
extension of the incompressible models to compressible flows.
The postulate was formulated based on early experiments on
compressible boundary layers along adiabatic wails and
compressible wakes, and essentially suggested that the
dynamical field in a compressible flow behaves like an
incompressible one. This postulate was used by numerous
researchers to assure that compressibility effects can be
accounted for directly by the variable mean density in the
governing equations alone. In other words, the influences of
fluctuating density on turbulence mixing are essentially assumed
to be negligible. The validity and extent of Morkovin's postulate
were reviewed by Bradshaw [2] and he noted that the postulate
is appropriate for flows where density fluctuations are moderate.
Therefore, the postulate is not valid for hypersonic boundary

The second source of difficulties has to do with
turbulence mixing. Here, even for incompressible flows, many
problems remain to be resolved [14-17], especially when the
flow is unsteady and/or three-dimensional [18]. However,
among the many problems associated with turbulence modeling,
one stands out as most fundamental and urgently needs
attention. This is the treamaent of the near-wall flow [17].
Conventional approach is to invoke the wall function
assumptions; thus implying that near-wall turbulence is in local
equilibrium. Even for simple wail shear flows, the assumption
is not quite valid because near-wall turbulence is not in local
equilibrium. Consequently, a low-Reynolds-number treatment
is necessary in order to obtain results that agree with
measurements in the near-wall region [17, 19-21]. The need for
near-wall treamaent of flows with heat and mass transfer has also
been pointed out [22-25]. This problem is expected to be more
acute in compressible flow modeling [13] where the non-
linearity of the governing equations are further compounded by
the variable mean density.

The present objective is to model near-waU compressible
turbulent flows where the coupling between velocity and
temperature cannot be ignored. As a ftrst attempt, only the
modeling of the turbulent kinetic energy and its dissipation-rate
equations is considered. With the assumption of gradient
transport, the two-equation model could be used to effect closure
of the mean flow equations. Since the transport equations for
the heat fluxes and the temperature dissipation rate are not
modeled and solved, a constant turbulent Prandtl number is
invoked to relate the heat fluxes to the momentum fluxes. In
view of this assumption, the present approach only addresses
the issue of compressibility effects on turbulent mixing and not
on heat transfer and its interaction with turbulence. An attempt
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onthis latter problem will be made after the present model has
been validated.

2. Proposed Modelin_ A_Dmach

With the availability of near-wa/l models for temperature
variance and its dissipation rate [24], heat fluxes [25],
Reynolds-smesses [26] and the dissipation rate of the turbulent
kinetic energy [27], the time is now ripe for their extension to
compressible flows. In order to consider the effects of variable
mean density and its fluctuation on turbulence mixing, it is
necessary to analyse the exact equations and propose appropriate
models to effect closure. Two approaches are available. One is
to propose total/y new models for the terms in the compressible
equattons, while another is to attempt to extend the
incompressible models to compressible flows in a credible way.
Both approaches involve assumptions that could or could not be
verified experimentally. Since the present knowledge of
incompressible flow modeling is quite mature, as a first aitempt,
it is expedient to extend these models to compressible flows.
This can be accomplished by recasting the compressible
equations in forms similar to their incompressible counterparts
so that terms with explicit dependence on compressibility effects
can be isolated separately, and the incompressible limit can be
recovered in a straight forward and corr_t manner.

Since the turbulent kinetic energy equation or k-equation
is obtained by contracting the Reynolds-stress equations, this
means that the recasting of the Reynokls-stress equations should
be attempted fu'st. In other words, the viscous diffusion and
dissipation terms in the Reynolds-stress equations have to be
similarly deflne.d as their incompressible counterparts. This
suggests splitting the viscous dissipation function into a

• solenoidal part, which is not sensitive to changes of
compressibility indicators, and a dilatational part, which is
directly affected by these changes 28. When the Reynolds-sm_ss
equations are written in this form, three additional terms that
depend explicitly on compressibility effects are present. The k-
equation is then obtained by contracting the Reynolds-stress
equations and its incompressible counterpart is recovered
correcdy when density becomesconstam and the additional
terms vanish identically. An equation that governs the _spOrt

of the solenoidal dissipation rate (e) of the turbulent kinetic

energy (k) is derived and modeled along the line suggested
above. Again, additional terms that depend explicitly on
compressibility effects appear in the equation. This equation
also reduces correctly to its modeled incompressible counterpart
because the additional terms vanish for constant density flows.

All models proposed for the k and ¢ equations are expressed in
terms of this solenoidal dissipation rate. A model with explicit
dependence on the turbulent Much number proposed by Sarkar
et al. [28] for the dilatational dissipation is adopted. Thus
formulated, the two-equation model is valid for compressible
flows and approaches its incompressible limit in a straight
forward and correct manner.

The systematic approach described above, if proven
successful, could be used to extend incompressible near-wall
models for heat-fluxes, temperature variance and its dissipation
rate to compressible flows. A set of equations governing the
transport of incompressible heat fluxes has been proposed and
validated against simple flows with heat transfer [25], while a
similar set of equations for the temperature variance and its
dissipation rate [24] has also been validated against boundary-
layer flows. This means that near-wail heat transfer models
could also be extended to compressible flows using the approach
proposed above. However, before this extension is undertaken,
the asymptotic consistency of these models has to be verified.
Until such time, the assumption of a constant turbulent F_'andfl
number for near-wall compressible flow is inevitable.

In the following, the compressible equations are first

derived, then the near-wail modeling of the k and e equations are
discussed. In section 6, the two-equation model is used to
calculate compressible boundary layers on a flat plate assuming a
constant turbulent Prandtl number. Comparisons with
measurements [9, 29-31] and other calculations, such as those
obtained using the k-o model of Wilcox [8], a_recarried out to
assess the importance of density fluctuations on the calculated
results and, hence, the validity and extent of Morkovin's
hypothesis.

3. Mean How Equations

The compressible mean flow equations are obtained by
applying Favre averaging to the instantaneous Navier-Stokes
equations which for Newmnian fluids can be written as:

0p 0 , u,'
_- +_-xtp._= o , 0)

_(_Ui) _(pUiUj)=..__+_" axi 8xj '

___h:_rI aui

(2)

(3)

where'qj '-'_axj +c_xiJ'3 I20-'_=kij ,
(4)

ui is the i th component of the velocity vector, x i is the i th
component of the coordinates and p, T, 19, It, n, Cp are
pressure, temperature, density, viscosity, thermal conductivity
and specific heat at constant pressure, respectively. Favre
decomposition is applied to all variables except p and 19where
conventional Reynolds decomposition is assumed. In other
words

w

ui = (Ui) + ui , (5)

T = (0) + 0" , (6)

P-- P + p' , (7)

p = _ + p' , (8)

where u."and 0" are the Favre fluctuations and p" and p" are the
Reynolds fluctuations. If < > is used to denote Fawe-averaged
quantities and the overbar the Reynolds-averaged quantities,
then themean equations for compressible flows can beobtained
as follows. The above decompositions (5)-(8) are substituted
into (1)-(4) and the resultant equations are averaged over time.
If the turbulent flow is further assumedto be stationar,} and the
mean momentum _uapqn and the Reynolds-stress and turbulent
kinetic energy, k = _(u; ui), equations to be derived later are used
to simplify the thermal energy equation, the turbulent mean flow
equationsbecome ....

_(_<u_>) = , (9)0

a --U aV a<_.> a
N(P(,XUj>) =- N + --F_j -N

. . a.q "

(F'(ui)(uj)) + _x_ ' (10)



B - _ -Be"

(11)

In these equations, g = _', r = _" and C_ = _ have been
substituted and the mean and fluctuating strcs'ses ar_ given by

U- _xj _xi] _Xk

The quantity, C'V(O) + o_(Uk)(Uk) + k. is the mean total enthalpy
+ _ (H). Thus written. (9)-(11) reduce to their incompressible

_ iC0bnte_aflSeXaedywhen densitybecomesconstan_

• : " An order-of-magnitudeanalysisiscarriedouton (9)-
(lI).The resultshows thattheunderlinedtermsarcofsmaller
orderand,asa firstapproximation,couldbcneglectedcompared
tothe terms retained.Thus formulated,the compressible
equationsarcidenticaltotheincompressibleequationsand the
additionalunknowns arethe turbulentmomentum and heat

fluxcs,justasintheincompressiblecase.The presentapproach
proposestoclosetheseequationsassuminggradienttransport.

As a firstattempt,anear-walltwo-equationk-emodelisusedto
determinetheturbulentviscosityandaconstantturbulentPrandtl
number isinvoked torelateturbulentmomentum and heat
fluxes.Therefore,thepresentmodel cannotfullyaccountfor
theeffectsofdensityfluctuationon turbulentheatn'ansfcr.

4, Modeling of the Turbulent Kinetic En_ Eouation

The Favre-averaged transport equation for the Reynolds

stresses _'(u_u;)could be similarly derived as in the

incompressible case [16]. That is, the ith fluctuating velocity
equation is obtained by subtracting the mean momentum
equation from the instantaneous equation. Repeat the same
procedure to obtain the jth fluctuating velocity equation. The ith
fluctuating velocity equation is then multiplied by. the jth
fluctuation velocity and vice versa and the two equataons are
added together and averaged over time. Omitting all the algebra,
thefinalexactequationis:

%. _.2_

(12)

+

Symbolically,theaboveequationcanbewrittenas

Cij=D[j+ ,v --D ij" P _"_j+ t_iJ + Pij + Oij + Tij (13)

With the exception of Gii and Tij, (13) is similar to its
i_compressible counterpart 126]. For an incompressible flow,
u i - 0, and Gij = Tij = 0. Even under this condition, (13) fails
to reduce properly to the incompressible equation given in Ref.

6_jv The rea_son lies in the grouping of the terms- pt_ij + {l)ij_. I11order to achieve this incompressible limit

correctly, a re-arranging of the terms in ID7v - p¢_ + Oi+) is
necessary.Ifwscousdiffuslonand dissipatlofi_inco_pres_|ble
flows are againdefinedsimilarlyto theirincompressible
counterparts,or

[ u;u--:l
"=-- I_-----U-AI

Vij _Xk_ _Xk ] , (14)

eij= 2V _ "l
_Xk_Xk ' (15)

thenthet=ms(DiT-PeTj+oij)canbcm-arrangedtogive

(16)

c_ + ._j__
where £ij - 3 _ _xj _xk _x i _xk ]

(17a)

a,Tj--L, xj

+Ox_l-J_x_/j + _ ui_ + uj

3L xj* j (17b)

Note that (16) reduces to its incompressible counterpart exactly
when constant fluid pro ¢p_--rtiesare assumed. For compressible
flows, an exwa term -ff'_i appears in (16). In addition, three
additional termsarefound'in O*. The term _'ei¢i is a dilatational
term and could be interpreted'as compressible or dilatational
dissipation. This term is only important for compressible flows.

It should bc pointed out that O.t3 is given by (17b) and, as
a result of this particular partitioning, there arc several extra
terms resulted from compressibility and variable viscosity.
However, at high Reynolds number, dimensional arguments
reveal that these extra contributions are not, important, l,f
pressure diffusion is further neglected, then D;';, P--el;and Oi;

, tJ J . J

would assume the same form as their mcompress,ble
counterparts. Therefore, the high-Reynolds-number
incompressible models proposed for these terms [ 16, 32] could
be straight-forwardly extended to compressible flows.
However, a model for the compressible dissipation term _'_j is



requiredto complete closure. For high-Rcynolds-num0er
flows,thiscompressibledissipationcouldbe assumed tobe
isou'opic.As aresult,thefollowingmodelisproposed:

where

£icj= _ _ij£c

¢¢ = 3 _bXk/

The modelingofechas been attemptedby Sarkarctal.
[28].They arethefirsttorealizethatthecontributionof the
dilatationaldissipationterm isimportantforsupersonicshear
flows. A simplealgebraicmodel, which isbased on an
asymptoticanalysisand a directnumericalsimulationof the
simplifiedgoverningequations,hasbeenproposedforcc,Their
proposalcouldbemodifiedtobecome

£C _- c_IMI2 E ,

where aIisa modelconstant,Iv_= 2k,/T2,p_ = _ l_x-_}isthe

dissipationof k and _" is the localmean speed of sound.
Therefore,M tisthelocalturbulentMach number.Itshouldbe

pointedoutthatSarkaretal.'s[28]definitionof_cisfourtimes
largerthanthedefinitiongivenin(19)asaresultofa different

splittingofthetermsin(16).Consequemly,al shouldtakeon
avalueequaltoI/4ofthatsuggestedinRef.2g. Based on an
analysisofdecayofcompressibleisotropicturbulence,Sarkarct
al.[28]suggesteda valueof one fortheirconstant.Inother

words,aI = 0.25.Ifct!isevaluatedbasedon compressible
shearflows,itsvaluewould be 0.15.The presentstudyadopts

a I= 0.15fortheanalysesofboundary-layerflows.

The k-equationisobtainedby contracting(12) and
makinguse of(16)and (18)tosimplifytheresultingequation
whichcanbe_n as:

_) -v --T I_ I_* l--
Dt = _k + DI_ + 2 l_ii + _ii " L, .i

+ 21.Gii1+ _Tii. (20)

Itcan be se_n thatthe terms,DkT, _i and P_ii,and the
coefficient,u:,appearingin Gii and Tiirequire"r_odeling.

i • thFurthermore,when p Isassumedtobeconstantand ui= 0, .c
lastthree terms in (20) are identicallyzero and me

in_oml_ressibleequationisrecoveredexactly.The modelingof
I_, 4)iiand O'_iicouldbe accomplishedby drawingparallels
wlththeirincompressiblecounterparts[26,27].However,this
requiresknowledgeoftheir behaviorinthe near-wallregion.

The near-wallbehaviorof (20)can be analysedby
assuming Taylorseriesexpansionsaboutthe wall for the
fluctuatingquantities.This analysisis similarto the
incompressiblecase_26]exceptthatexpansionsalsohave tobe
assumedforp'and0 . The proposedexpansionsarc:

u"= aIy + a2y2 + ....

v" = bly +b2 y2 + ....
(21)

w" =Cl y +c2 y2+ ....

0"=dl Y+d2Y2 + ....

p'=e Iy+e2 y2+ ....

It should be cautionedthat,although the velocityand
tcrnpc_tumexpan_onsarephysicallycorrect,theexpansionfor
densityisan assumption.As pointedoutbyBrm:lshaw[II],the
fluctuatingtemperatureand densitycould not go to zero
simultaneouslyatthewall.Otherwise, itwould lead toa zero

wallp'.In general,temperaturefluctuationisassumed tobe
(18) zeroatthewall,whilep isnot.Here,theassumptionismade

thatp'alsogoes tozeroatthewall,however,itsvalueaway
from thewallisfinite.Sincep'istakentobeessentiallyzero
overthewholefieldinMorkovin'shypothesis[10],thepresent
approach could be viewed as a partialrelaxationof that
assumption.Consequently,':heproposedmodel would not be
validfor allfrcc-strearnMach number and wall thermal

boundaryconditions.Therefore,one ofthepresentobjectiveis
toanalysethevalidityand extentoftheproposedtwo-equation
model.

Forincompressibleflows,bI= 0 isobtainedbyimposing
theincompressibilityconditionand becomesacrucialcondition
innear-wallanalysis.Thisimportantconditionholdsthekey to

(19) thepresentextensionofthenear-wallincompressiblemodelsto
compressibleflows.Inordertoshow thatblindeedvanishes

under these conditions,the continuityequationfor p'isfirst
derived,or

(22)

Expansions(21)arethen substim:edintotheaboveequation.If
(Uk)= 0 atthewallisused,itcan beeasilyvc__cd _at,under

the assumptionof (21),bI = 0 isstilla validcondi_onTor
compressibleflows,irrespcctjyeof thethermal boundary

condition.Therefore,theassumedp'expansionfacilitatesthe
modelingofcompressibleflows,becauseallrerunsin(_0) have
similarforms astheirincompressiblecounterpartsexceptthe

extraEicitermwhichneedstobcanalyzed.

Usingdefinition(18)for_i,itiseasilyverifiedthat¢d_is
oforderyZ. The high-Reynoldg-numbermodel (19)alsohas
similarbehaviornearawall.Therefore,itispropose.d•toextend

(19)tonear-wallflowwithoutmz._fication,while__enear-wall
balanceprovidedby thqexact_iistakenintoconsiderationby
combiningitwiththeOilterm.As for_fdi,itcouldbemodeled
by followingtheargumentspresentedinRcfs.26 and 27 for
incompressibleflows.Inessence,Rcfs.26 and 27 arguethat
theincompressible_ican besetequalto2_and thenear-wall

correctionsproposed foreijhave littleor no effectson the
behaviorof_iintheregionnearawall.Thismeans that_ can
beapproximatedby 2_ inthewhole field.Inviewofthis,the
model fore'elican beassumedtobe givenby 2_t, Based on
thismodel,equation(15)and expansions(21),itcan beeasily
shown thattheleadingterm ofe inthenear-wallregionisa
constantequalto itswallvalueew. Again,thebehavioris
similartoitsincompressiblecounterpart.

Near-wallanalysisagainshowsthatmrbulem diffusionisa
higherordertermand itshigh-Reynolds-numbermodelcouldbe
adoptedbecauseitdoes notaffectnear,wallbalanceofthek-
equation.Consistentwiththeassumptionoi_gra_enttransport
fortwo-equationmodels,theincompressiblemodelforturbule_
diffusionofk isextendedtocompressibleflowsby writing.D_
= b(C_t/Ok)bk/_xi)/_xi,where _ isa constantand _'_isthe
turbulentviscositydefinedby _"_= C_4f_'k2/_. In this
definition,Cu isamodelconstantwhilefu_sadampingfunction
tobedefinedlater.Basedon (21),theleadingordertermofk in
thenear-wallregionisy2.Since_ = ¢.winthisregion,k2/ehas
tobe of order y4. Iftheshearstressisdefinedwithrespectto
_, thenitcan beshown thattheleadingordertermoftheshear
stresshastobeofordery3inthenear-wallregion.Therefore,it
followsthatv t= P._ isalsoofordery3neara walland this,

±

m



in ram, leads to a similar behavior for the modeled D_ tcrrn in
the near-wall region. This b,.ehavior is consistent with the
behavior of the exacLterm D_ appearing in (20). In other
words, the modeled D_ does not affect the near-wall balance of
(20).

According to (18), e_i = 2e c. As such, the near-wall
behavior of the exact e_i is not properly accounted for by the
proposed model. In the above discussion, it is argued that the
ncar-wgll behavior of e_i could bc modeled together with the
term (;I)ii. In order to analyse the near-wall behavior of the
combined term (q)_i + P'_i), the behavior of Gii and Tii net.- a
wall has to be studied. The appearance of mean pressure in Gii
makes the analysis slightly more ddft_culc However, the
difficulty could be circumvented by making use of the mean
momentum equation (10). The final analysis shows that the
combined (Gii + Tii) term has the following near-wall behavior,
namely,

Gll +Tll -.) O(y 2) ; G33 + T33 .-=)O(y 2) ;

G22 + T22 =.-)O(y 3) . (23)

Th_smeans that,tothelowestorder,thenear-wallbehaviorof
(_ii+ P'_i)issimilartoitsincompre,ssiblecounterpart[26].
For incompressibleflows,theterm,q)ii,can be writtenintoa
pressurediffusionpartand a pressureredistributionpart.
Pressureredismbutionisidenticallyzeroand sincepressure
diffusionisrelativelysmall,itisusuallyncglecled.Such isnot
thecaseforcompressibleflows.The term,q)ii,can again bc
partitionintoa pressurediffusionpart,which could be
neglected,and a term involvingpressure-velocity-gradient
correlation.Thislatterterm does not vanishbecausefluid

volume changesasa resultofdensityvariation..Therefore,an
argumentcouldbe made tomodel theterm,(_ii+ P'_"i),to
accountfor dilatationaleffectsonly. In view of this,the
followingmodelisproposed,or

[_(U_/ (24)+ = - k / '

where7 isamodelconstant.

The proposedmodels stillfalltoclosethek-equation

becauseofthepresenceofu_inTiiand Gii. Ther_._cforc,itis
w

necessarytoshedsome hghton themodelingofui,which is

identicallyzero for incompressibleflows. Using Favre

-"averaging......._,itcan beshown that-p'u = pu;. Inotherwords,
N m

ui= -p'ui /p. Previousproposalsfor-p'uiarcbasedon the

gradienttransportassumption;namely,

w

.P'Ui= .Y.L_P (25)
Of)_xi '

whereop isamodelconstam.However, a more elaborateway
to modclthe term is to adopt the proposal,

-=..=f

whereCp isamodel constanLAlternatively,thetermcan also
bemodeledby

(8) p p
(27)

where13equalstounityforanidealgas.

The near-wallbehaviorofthemodeledk-equationcan
now beanalysedusingexpansions(21).Itcan beeasilyshown
thatintheregionverynearawail,themodeledk-equationisin
balanceup toordery. Consequently,itdoesnotnccd further
modificationstoachieveaconsistentasymptoticbehaviorneara
wall

5.M_ellinE oftheDissipation-RamF__.uation

The exacttransportequationforthesolenoidaldissipation
rate("pe)carlbederivedasintheReynokls-stressequation(12).
Ithasbeenpointedoutthatthee-equationisthemostdifficultto
model even forincompressibleflows[13,16,17,26,27,32].
The reasonbeingthatmany ofthetermsintheexactequationare
eithernotknown orcouldnotbemeasuredaccuratelyazpresent.
Consequently,theincompressiblee-equationismodeledinanad
hoc mannertoresemblethek-equationinformsothattheright
handsideofthee-equationagainconsistsoffourterms;namely,
viscous diffusion,turbulentdiffusion,production and
destructionofe.The equationisfur_czmodifiedfornear-wal!
flowsby addinganextradesn'uctionterm_ sothatthemodeled
quationremainsbalanceasa wallisapproached.Thereisa
ack of measurements in compressibleflows,therefore,a
rigorousmodelingofthecompressiblee-equationisnotpossible
atpresent.An alternativeistoextendthe high-Reynolds-
numberincompressiblemodelstocompressibleflowsand then
seekanear-wallcorrectiontothemodelede-equationalongthe
linesuggestedinRef.27. Inview ofthis,theexacttransport
equationforthedissipationrateisnotinaconvenientform to
work with.The proposalofSpezialeand Sarkar[13]withthe
dilatationaleffectsexplicitlywrittenout will be more
appropriate.

Following Spezialc and Sarkar [13],the modeled

transportequationfore withnear-wallcorrectioniswrittenin
thesimplifiedform:namely

-'_'-=axi__ixi/ D_+Pr-Ar-3 axi +_'
(28)

whereD_ istheturbulenttransportof_ Peistheproductionofe
due tod-eviatoricsn'alns,A_ isthedestructionofe and _ isa
near-wallcorrectionforcompressibleflows.The secondlast
term on the right hand side of (28) is exact and results from the
wriRng of the exact e-equation into the form of (28). When the
dissipation-rate equation is formulated in this form, it is
reducible exactly to its incompressible counterpart and,
_herefore, the terms D_, Pe and Ae can be modeled by a variable
density extension of their incompressible models. Following the
suggestions of Refs. 13 and 27, the models proposed for D_, Pe
andA_me:

(29a)

k_i .//_xj "3"_-Xk vii} '
(29b)

w

A_ = C_kk, (29c)



where themodel constants_l and Cr2 arethesame asthose
giveninRef.27 forincompressibleflowsand ["= E -ew. It
should be noted that the mean dilatational effects are accounted
for exactly by (29b) for compressible flows and that these
models reduce ¢xacdy to their incompressible counterparts when
the flow Mach number becomes very small. In addition, the
ordering of these model terms is similar to their incompressible
counterparts. Therefore, the near-wall function _ can be
determined in a manner similar to that proposed in Ref. 27.

The incompressil:'.e form of (28) with model terms given
in (29) is identical to that proposed in Refs. 26 and 27. In these
studies, the coincidence condition suggested by Shima [21] was
used to determine _. This is equivalent to requiring the modeled
e-equation to achieve balance behavior in the near-wall region at
least up to order y. The approach used to deduce _is to
assumed a functional form for _ with two undetermined model
constants. One of the constant can be determined from near-wall
analysis, while the other is evaluated using computer
optimization. The _ function thus determined has been used in
Ref. 27 to calculate flat plate boundary-layer flows and in Ref.
26 to calculate fully-developed channel and pipe flows. These
calculations were carried out over a wide range of flow
Reynolds number. The results were compared with direct
simulation dam as well as measurements. Very good agreement
has been found for both the limiting behavior of the turbulence
quantifies and e when compared to direct simulation data [33-
35]. Furthermore, the two-equation model calculations of Ref.
27 are found to give better results than those obtained by
Speziale et al. [36]. In view of this success, the same approach
can be used to determine _ for compressible flows.

The functional form assumed in Ref. 27 is adopted here,
or

=fw,2P" " k +M , (30)

wherefw2 isadampingfunctionthatgoestooneatthewalland
zerofaraway from thewall.ItisdefinedinRef.27 asfw2 =
e'(Rt/64)2, where Rt = k2/'ff8 is the turbulent Reynolds number.
The funcdon e* is defined as E° = _ - 2v-'k/y2 by generalizing the
incompressible definition used in Ref. 27. Similarly, e is
defined with ew given by Ew= 2v(&Cl_/_xj_. Once _ is
postulated, the near-wall behavior of (28) and the modeled terms
of (29) can be analysed using expansions (21). If the modeled
equation is again required to be in balance up to order y, then it
can be easily shown that N = 2 - Ce2 because the mean
dilatational terms are of order y. Therefore, to order yo they do
not contribute to _. In Ref. 27, the part involving C_2 in N is
grouped together with M to give M! = (C.r.2_/e "2 + M) and its
value is determined through computer optimization studies.
Again, the same procedure is followed in the present study to
determine M I.

Finally, to complete closure of the governing equations,
gradient transport is assumed for the Reynolds stresses and the
relation is given by

(31)

In addition, a constant turbulent Prandd number is assumed so
that heat and momentum diffusivity can be related by Pr t = _-t./'E
)t where _t is the turbulent thermal dfffusivity. The damping
function fu appearing in the definition of'fit can now be defined.
In view of the similarity of the present k and e equations with
those for incompressible flows, the f_ used in Ref. 27 is
adopted here. It is defined as

f_. = (1 + 3.45/_') mnh (y+/115) , (32)

where y+ = yu.r/'_" is the wall coordinate and wr(x) is the friction
velocity. In this definition, y is taken to be the normal
coordinate and x the stream coordinate.

A first step to validate the two-equation model for
compressible flows is to apply it to calculate flat plate boundary-
layer flows with different wall boundary conditions and free-
stream Mach numbers. In this initial attempt, heat flux is not
modeled separately. Instead, it is related to momentum flux via
the assumption of a constant turbulent Prandfl number. The
rationale for doing this is to carefully assess the assumption
made in (21) concerning the expansion for p', whose validity
affects the near-wall analysis used to justify the direct extension
of the incompressible near-wall function _ to compressible
flows. By choosing the simplest type of compressible flows to
validate the model, a careful analysis of the validity and extent of
the expansion for p' can be carried out. A second objective of
this validation is to determine, ff possible, the validity and extent
of Morkovin's hypothesis. In other words, it is hoped to
evaluate the Mach number range and the type of wall thermal
boundary conditions in which the effects of fluctuating density
can be neglected in the modeling of the governing equations.
Therefore, the experimental data chosen for comparisons are
selected from three different groups; one with adiabatic wall
boundary condition and varying free-stream Mach number,
another with constant wall temperature and varying free-stream
Mach number, and finally the variations of skin friction with
free-stream Maeh number and wall temperature as prescribed by
the van Driest II formulae given in Ref. 9. The data for the fast
two groups are selected from Ref. 31. Only one case with
constant wall temperature is selected. The reasons being that the
other cases reported in Ref. 31 are either not accurate as far as
the measured skin friction is concerned or the measured mean
velocity and temperature are doubtful. In the following, the
governing equations for compressible flat plate boundary-layer
flows are first presented. Then the calculations and comparisons
with data are examined and the validity of the two-equation
model is studied in detail. Finally, the model performance and
its proposed improvement are discussed.

6,/, Governing Eauations
Two-dimensional, steady compressible boundary layers

on a flat plate are considered. If the usual boundary-layer
approximations are made, then equations (9) - (11), (20) and
(28) can be substantially simplified. For the sake of
completeness, the boundary-layer equations in Cartesian x-y
coordinates are listed here as:

(33)

, (34)

_(H)+- .O(H) 0
=Ty

-'_--+_tl'l)_1" _l)( I + Pr(1 " Pr0_' )_tt_ "_'_

Prtt0yJ '

(35)



- If-

(37)

In writing down these equations, (33) has been used to relate the
shear stress to the mean velocity gradient. It is also noted that
Gii is zero for flat plate boundaxy-layer flows while the only
term of importance in Tii is that given by u". If (25) is used to
evaluate u", then Tii is of order yZ and is not important in the
near-wall region, which according to So et al. [27] is bounded
by 0 < y+ < 5. The model constants arc taken from Refs. 27
and 32 and are given by: Ctt = 0.096, Cel = 1.5, Ct2 = 1.83,
ok = 0.75, (Tr = 1.45, (x1 = 0.15, (_o = 0.5 and 7 =0.182. The
turbulent Prandtl number Pr t is sj)ecifled as 0.9, while Pr is
assumed constant and taken to be 0.74. Sutherland and power
laws are used to evaiuate fluid viscosity at an appropriate
reference temperature. The constants (_o and.Oil are determined
by calibrating the calculated resuhs' against some classic
experiments such as those provided in Refs. 29 and 30. Once
determined, they are kept constant for all other calculations. In
fact, the cases to be compared in the next section are different
from the cases used to calibrate (_o and c(1. As for N and M l,
the final choice of values adoptexf arc 2 and 1.5, respectively,
just as in Ref. 27.

The boundaryconditionsaxeno slipatthewallformean
velocitiesand k,and zeroheatfluxorconstantwalltemperature
atthewallforenthalpy.As for_,itsvalueatthewallisgiven

by2v(bCl_'/"dyJ_,vAt theedge oftheboundarylayer,free-stream
conditionsarc specifiedforboth mean streamvelocityand
enthalpy.Inprinciple,k and eshouldbczerointhefreestream.
However, inpractice,theyareassumedtotakeon some very
smallvalues,of theorderof 10-7,inthefreestream.Thus
formulated,theabove equationsand theappropriateboundary
conditionscan bc solvednumericallyusingtheboundary'layer
codedevelopedby Andersonand Lewis [30]and modifiedby
So etal.[27].

All measurementsused tovalidatethenear-walltwo-
equationmodel aredrawn from Rcf.3I. The calculationsare
carriedout over therange,0 < Moo < 10,foradiabaticwall
boundaryconditionand over therange,0 < Ow/O r< I,for
constantwall temperaturecondition.Here,Ow isthewall
temperatureand Oristherecoverytemperatureforadiabaticwall
boundaryconditionand istheadiabaticwalltemperaturefor
constantwalltemperature.ItshouldbepointedoutthatOw/O r=
1.0correspondstoadiabaticwallboundaryconditionwhile
Ow/O r< l indicatesthatthewalliscooled.Sinceonlymean
flow propertiesareavailablefrom Ref.31,comparisonsate
made withthesemeasurementsand anothersetofcalculations
usingthek-c0model ofWilcox[8].Allcomparisonsaremade at
thesame momentum thicknessReynoldsnumber (P-0)asthe
measurements.Four setsofdataarechosenand thesearecases
55010504, 53011302 and 73050504 with adiabaticwall

boundary conditionand case 59020105 withconstantwall

temperature.The free-streamMach number (Moo)forthese
casesarc2.244,4.54.4,10.31and 5.29,respectively,whilethe
correspondingR0's are 20,797,5,532,15,074 and 3,939.
Therefore,thedatacovera wide rangeofRo and Moo. The
variationsof skinfrictionwithMoo and Ow/Or arccompared
with thevan DriestIIformulaereportedfor a fixed..Reas
specifiedinRef.9. Finally,an assessmentofcompressibdity
effectson neat-wallflows isattemptedby comparing the
calculatedturbulencestatisticsfor the differentcases

investigated.

6.2 ComparisonswithData
The resultsaxeorganizedinthefollowingmanner for

presentation.Mean streamvelocitiesarcnormalizedby u7to
giveu÷and theyareplottedversusIny+ (Fig.l),where Yw is
definedasury/"ffw.A directplotofthemean velocitiesisa:Iso
giveninFig.2 where<U>/U. versusy/8isshown. Here,6 is
theboundary layerthicknessdefinedasthe locationof y in
which<U>/U, = 1.0asspecifiedby themeasurementsandU,
is the free-streamvelocity. On the other hand, mean
teml_m-amresarcnormalizedbyO,., thefree-streamtemperature,

and a_ shown venus y/8(Fig.3),_Plots..fnrthe,..Rroperties,k+
= Ida, e+ = eV/u2,-uv+ = -uv/ufand -0v+ = -0vA.I_O.,are
presefited_)f y+ andy_.Near-wallbehaviorofk+,e+,
-_"+ and -0v+ (Figs.4..2.-7)are discussedfurst,then the
disuributionsofk+ and -uv+ intheouterregionareexamined
(Figs.8 and 9). InFigs8 and 9,8 isnot interpretedfrom
measurements;ratheritisevaluatedatthey locationwhere
<U>AJ, = 0.9974.Only thebudgetofk inthenear-wallregion
forcase73050504 (M_ = 10.31and Ow/O r= 1.0)ispresented
(Fig.10) becausethe k budgetsfor the other cases are
essentiallysimilartothatshown inFig.10.The effectsofMach
number on the asymptoticbehaviorof k are examined by

plottingal_versusM,,,(Fig.II),where ak isthe leading
coefficientm theexpansionofk+intermsofYw. Accordingto

Ref.27,_ = +2_.Therefore,byexaminingakversusM,, the
variationof ew withMach number isalsoevident. Other
asymptoticpropertiesatetabulatedinTable lforcompariso@.

The variationsofskinfrictioncoefficient,Cf = 2Zw/-_-U'.,
withMoo and Ow/O rarecomparedwig van DriestItresuVts[9]
inFig.12. Finally,themean vel_fftyplotsinterms ofthe

compressible u+ definedas u+ -(_(-_p_)d<U>)/u, for two
different M. are shown in Fig. 13. This figure is provided to
illustrate the deviation or lack thereof from the van Driest law of
the wall for compressible flows [37, 38].

Two versions of the present k-e modcl are used to
calculate boundary-layer flows. One designated k-_ model/1
solves the k and e u'anspon equations as given in (38) and (39).
The second designated k-e modcb'2 solves (38) and (39) with all
additional compressible terms neglected and the bk/by term
omitted in (37). In other words, the two-equation model for k-e
model/2 is a direct variable density extension of the two-equation
incompressible model of Ref. 27. These calculations can be
used to evaluate the validity and extent of Morkovin's
hypothesis and the importance of having an asymptotically
consistent near-wall conwtion for two-equation models.

Four sets of u+ results arc shown in Fig. 1. In the figure,
thecalculatedandrncasuredCfand theCfdeterminedfrom the
van DriestItformulaofRef.9 arelistedforcomparison.The
log-lawshown isused todemonstratetheexistenceof a log
regioninthecalculatedand measuredflows,while thevon
Karman constant_cistakentobe0.41.Itisrecognizedthatthe
interceptisafunctionofMach number,however,inthisfigure,
theinterceptistakentobe 4.7.The actualvalueusedisnot
important because the purpose here is to illustrate the slope of
the log-law. It can be seen that a log region indeed exists for all
calculated and measured flows. The slope is fairly constant for
the three adiabatic wall cases tested and the _ thus determined is
approximately 0.41. For the cooled wall case, the k-e model
predicted slopes are slightly different from that calculated by k--_
model. None of these slopes yields avon Karman constant of
0.41 though. C.fis predicted correctly by all three models with a



maximumerror of less than 5%. For the cooled walI case, the
measured Cf is substantially higher than the van Driest II value
and, according to Ref. 31, is not as accurate as the measured Cf
for the other cases studied. The model calculations are in good
agreement with the van Driest II values for all cases examined.

Calculated u+ profiles correlate well with measurements.
At high Mach numbers, there seems to be substantial difference
between model predictions and measurements in the outer region
of the boundary, layer. Such a difference is also noted when the
plots are given in terms of <U>/U,,. versus y/8 in Fig. 2. From
these plots, it can be seen that k-8 model predictions of <U>/U.,
are in better agreement with data than k-co calculations (Fig. 2).
The agreement between k-e model predictions and measurements
is good up to h/I, = 10.31. On the other hand, the discrepancy
between calculations and measurements deteriorates as M,.
increases for the k-co model. Therefore, the proposed k-e
models represent improvements over existing models whose
predictions are correct only for M.. < 5 (see e.g. Ref. 39).
Since most existing models do not have an as .y.mptotically
consistent near-wall correction and are direct extensions of their
incompressible counterparts, the discrepancies display by these

models for M.. > 5 are understandable. Present results show
that, if the near-wall flow is modeled in an asymptotically corre_
and consistent manner, the incompressible models can be
straight-forwardly extended m compressible flows with a free-
stream Maeh number as high as 10. It should be pointed out that
the k-co model is not an asymptotically consistent near-wall
model. Therefore, its prediction of <U>/U,,, in paticular that
for the cooled wall case, is not as good as k-e model
calculations. One reason could be the fairly low Ro (3,939) for
this case. Since the results of k-e model/2 arealso in good
agreement with measurements (Figs. 1 and 2), the comparisons
suggest that the additional compressible terms in (38) and (39)
are not too important. However, an examination of the mean
temperature results tends not to support this conclusion (Fig. 3).

The mean temperature profile comparisons are shown in
Fig. 3. Predictions by the k-c0 model show substantial
discrepancies compared to the k-e model calculations and
measurements: particularly for the cooled wall case (Fig. 2a).
Discrepancies between measurements and k-co predictions
increase as M,. increases and as eJor decreases. On the other
hand, the agreement between k-¢ model/l predictions and data
improves as M_ increases for adiabatic wall boundary condition.
This is not true for k-¢ model/2 where the disagreement with
data is quite substantial at M_ = 10.31 (Fig. 2b). The
predictions of the cooled wall case (Fig. 2.a)tell a different story.
It seems that k-E model/2 gives as good a prediction of the
cooled wall case as that of k-e model/l (Figs. la and 2a). The
following three reasons could be put forward to explain this
behavior. Firstly, the p' expansion may not be totally valid for
constant wall temperature boundary condition. Secondly, the
proposed compressible models may be more applicable for
adiabatic wall boundary condition. Thirdly, the assumption of a
constant turbulent Prandfl number may not be appropriate.

The near-wall distributions of k+ for the four cases are
shown in Fig. 4. Only the predictions of k-E model/1 and k-co
model are compared. The calculations of k-e model/2 am.not
shown; instead, the limiting behavior of k+, -h--v+ and -0v + is
tabulated in Table 1 for comparison. In general, the predictions
of k-co model are substantially lowered than those of k-E
model/1. The peaks are about 40% lower than those predicted
by k-e model/1 and the locations where the peaks occur are
calculated to be further away from the wall than k-e model/l
predictions. According to k-¢ model/l, the peak ofk + decreases
as _ increases. The decrease is more than 20% over a Mach
number range of I0. On the other hand, a slight cooling of the
wall at M_ = 5.29 causes the peak of k+ to decrease to the same
level as that for the case of adiabatic wall with M, = 10.31.
These results suggest that wall cooling has more influence on
reducing turbulent mixing compared to compressibility effects.
Overall, compressibility reduces turbulent rmxmg and the

reduction increases with Ivi.. The near-wall distributions of t"+
as calculated by k-¢ model/l are plotted in Fig. 5. It can be seen
that the distributions are very similar to those shown in Ref. 27
for incompressible flows. The variations of _ with IvL, and
Ow/Or are very similar to those of k+. Again, maximum e +
occurs at the wall and a plateau in e+ is found in the range, 7 <
yo g 13. This means that compressibility has little or no effects

_'the near-wall behavior of r +. The exception is that increases
in compressibility and wall cooling tend to decrease e._v.

In general, k-co model gives a very accurate prediction of
-u-_': near a wall. Its predictions are as good as those given by
k-e model/1 (Fig. 6). From this set of pre.dictions,_@__efoUowing
observations can be made. Firstly, the peak of -uv + decreases
with increasing M,= and decreasing Ow/Or. Secondly, as M,,
increases and Ow/Or decreases, the location of the pe._akmoves
towards the wall. Thirdly, the rate of decrease of -uv+ in the
range, 30 g y+ < 100, increases as M.. increases. Finally, the
asymptotic near-wall behavior of -u--v+ is listed in Table L.fi_
comparison. Much the same behavior is also true for -0v +
whose distributions in the near-wall region are shown in Fig. 7.

If the distributions of 0v+ are plotted instead of_Ov +, the curves
will have the same shape as___ose shown for -uv+__.Therefore,
the observations drawn for -uv+ are also valid for 0v+.

The distributions of k+ and -_"+ across the boundary
layer are compared in Figs. 8 and 9, resp.._eStively. In all cases
shown, k-co model over-predicts k+ and -uv+ in the outer part o_
the boundary layer compared to the calculations of k-e model/1.
The over-prediction extends across the range, 0.2 < y/8 < 1.0.
Reduction of turbulence activities in the outer part of the
boundary layer is clearly evident when either compressibility or
wall cooling effects are presenL The reduction increases as Moo
increases and e,,,/er decreases. Therefore, it is expected that
turbulence activities will be substantially reduced in a flow
where the free-stream Mach number is large and the wall is
highly cooled.

The near-wall k budget for case 73050504 is plotted in
Fig. 10. Other budget plots are not shown because they are
essentially similar to that given in Fig. 10. It can be seen that the
k budget bears a lot of similarity with that calculated for
incompressible flows (see e.g. Ref. 27). The additional
compressible terms have neglig!ble effect on the near-wall k
budget. Therefore, the assumpuons made to derive the near-
wall function _ in the dissipation-rate equation are justified.
Again, viscous diffusion balances dissipation at the wall. This
balance extends to about y+_= 4 where turbulent diffusion and

• . • 4,"

producuon become _mportant. In the region, 4 < Yw g 15,
viscous and turbulent diffusion, production and dissipation are
equally important. Beyond y+ = 15, production and dissipation
are in balance, just as in the case of incompressible flows.
Consequently, the near-wall k behavior is very similar for both
incompressible and compressible flows.

According to Refs. 25 and 27, Taylor series expansions
about y_ = 0 can be assumed for k÷, -uv+ and -Or+. For
incompressible flows, the expansions are valid up to about Yw =
7. This range may not be applicable for compressible flows.
Nevertheless, such expansions for small y_, can still be
assumed. With the help of (21) these expansions can be written
as:

k+ = ak(Y+w)2 + bk(y_)3 + .......... (40a)

-u"'_= auv(Y+w)3+ buy(y+)4 + ....... (40b)

+ + 4
-Sv+ = avo(Yw)3+ bvo(Yw) + ....... (4O,:)



where the a's and b's are time-average coefficients that are

functions of x. A similar expansion can be deduced for E+.

Again, using (21), the definition of e and its wall boundary

condition, the expansion for e* can be written as:

_, = 2a k + 4bkY+w+ ........ (41)

turbulent Prandtl number. When Pr t = 0.7 is assumed, the
calculations are in even better agreement with data. The reason
could be due to a further reduction of turbulent mixing as a result
of the wall being cooled. However, this effect has not been
apprtrpriatelyaccounted for in the models, particularly their near-
wall behavior. In other words, ff highly cooled-wall flows are
to be predicted correctly, heat fluxes should be modeled
separately rather than linking to momentum fluxes via a constant
turbulent Prandtl number.

From these expansions, it can be easily deduced that
k+2/e+(y+,) 2 = 0.5. Therefore, the asymptotic behavior of
k+2/¢+(y_) 2 is 0.5 and is independent of M** and wall thermal
boundary/conditions. The accuracy in which a model can
predict this quantity is a reflection of the asymptotic consistency
of the model. Table 1 shows that k-e model/1 is indeed
asymptotically consistent while k-e model/2 is not as good. As

for the k-m model, its prediction of this limiting value is poor,
therefore, it is not listed in Table 1.

The "a" coefficients can be determined from the
calculations and their values are also listed in Table 1 for
comparison. It can be seen that ak varies with free-stream Much
number. A plot of ak versus M.. for adiabatic wall boundary
condition is shown in Fig. 11. The value of ak for the
incompressible case is taken from Ref. 27 and is plotted at M**=
0. Clearly, the trend is to approach an asymptotic value for ak at
high M... This decrease in a k is one of the reason why k
decreases for high Mach number flows (Figs 4 and 8). The
physical reason is that compressibility tends to hinder turbulence
mixing. As a result, both turbulent shear stress and kinetic
energy decrease significantly as M.. increases (Figs. 4, 6, 8 and
9). Since e._ = 2ak according to (41), dissipation at the wall is
also dependent on M,,. There is no clear trend for auv and ave.
However, the values of auv are consistent with those calculated
for incompressible flows [27] and direct simulation data [35].
The value of ave is essentially zero. Since there is no data
available, its correctness cannot be verified.

Finally, the ability of the k-e models to predict skin
friction coefficient over a range of M**and wall temperatures is
illustrated in Fig. 12. In Fig. 12a, the variation of Cf/(Cf) i with
/vl**for the case of adiabatic wall boundary condition is shown.
Here, (Cf) i is the skin friction coefficient for an incompressible
flow evaluated at R0 = 104 and is determined to be 2.73 x 10"3.
The figure shows a comparison of the calculations of k-e
model/1 and k-e model/2 with the van Driest II distribution.
Below M**= 5, the calculated variations of Cf/(Cf)i with M**are

fiJ__,I)i,gaui_
In the past, velocity profdes in wall coordinate were

invariably ploaed in terms of t_ to illustrate the existence of the
log-law and the constancy of_ in compressible boundary-layer
flows. The proposal was first suggested by van Driest [37] and
later confirmed by Maise and McDonald [38] when they
analysed ten sets of dam in the Mach number range of 0 - 5.

Since then, the compressible law of the wall is taken to be given
by u_ rather than by u+ and _ is considered to be about 0.41 and
constant over the Much number range of 0 - 5. The calculated
and measured velocity plots given in Fig. 1 show support for the
compressible law of the wall when it is written in terms of u+
rather than u+. Furthermore, !¢ is determined to be
approxamately 0.41 and is relauvely constant over the Mach
number range of 0 - 10. These results seem to conflict with the
proposal of van Driest [37]. In order to resolve this seeming
contradiction, the velocity plots of u_ versus In y+, for cases
55010504 (M.. = 2.244, Ow/Or = _1) and 53011302 (M.. =
4.544, Ow/O r = 1) are shown in Fig. 13. In addition, the
compressible law of the wall as given in Ref. 38 is shown for
comparison: It can be seen that a line that is parallel to the
compressible law of the wall can be drawn through a few of the
data points spanning over a narrow range of y+. On the other
hand, the calculated profiles are in agreement with data over a
wider range of y.+.. The slopes of the calculated profiles are
roughly parallel _nd are slightly larger than the slope of the
compressible law of the wall shown. Therefore, irrespective of
how the velocity prof'des are plotted, the calculations are in good
agreement with data. However, the slope of the log-law is given
by 1/0.41 only when the profdes are plotted in terms of u÷.

7. Conclusions

The k and e equations for compressible flows are derived
by assuming that there is no dynamical similarity between the
compressible and incompressible fields. Therefore, the
influences of fluctuating density on the mean and turbulence
fields have to be accounted for in the modeled equations. This

slightly lower than the van Driest II distribution but they are can be accomplished by first re-casting the exact k and
slightly higher beyond M** = 5. Essentially, there is no equations into forms that are similar to their incompressible
difference between the predictions of k-_ model/l and Ice counterparts. In other words, the viscous diffusion and
model/2. This means that both versions of the k-e model give a dissipation functions have to be defined exactly like their
correct prediction of the Cf/(Cf) i variation with M**for adiabatic
wall boundary condition. The predictions for the cooled wall
case are not as good, especially at low temperature ratio (Fig.
12b). Three sets of calculations are presented. These are k-¢
model/l, k-¢ model/2 and a third version ofk-e model/l with the
Ok/Oy term in (37) neglected. Calculations for this case are
carried out at M.. = 5, Ro= 104 and the incompressible Cf is
again determined to be 2.73 x 10-L It can be seen that error of
5% or larger starts to accumulate at approximately Ow/O r = 0.4
for k-e model/1. This trend is contrary to previous calculations
[8]. An examination of the governing equations solved by other
researchers revealed that, besides differences noted in the
turbulence model equations, the mean energy equation solved by
these researchers does not include the term Ok/_y in the right
hand side of (37). Indeed, when the 0k/0y term is neglected, an
overall improvement is obtained. The predicted Cf at Ow/O r =
0.2 is increased by about 6%, thus giving a better agreement
with the van Driest 11 formula. If the additional compressible
terms in the k-e equations are further neglected (k-_ model/2),
the calculated C_,fis only improved by about 3%. The remaining
disagreement could be attributed to the assumption of a constant

incompressible terms. This procedure gives rise to additional
terms in the k and _ equations. These terms depend explicitly on
compressibility and vanish when the fluid density becomes
constant. One extra term in the k-equation is related to fluid
dilatation and can be interpreted as compressible dissipation.
The others are production terms that depend on the gradients of
the mean pressure and mean viscous shears. All additional
terms are found to be relatively unimportant in the near-wall

÷
region, or 0 < Yw g 50. This realization, therefore, allows the
near-wail incompressible models to be extended directly to
compressible flows without modifications, while still
maintaining the balance of the modeled equations as a wall is
approached. Models are proposed for the additional terms in the
k and e equations. The constants introduced by the new models
are determined by calibrating the calculations against
measurements in compressible flows.

The near-wail two-equation model is used to calculate
compressible flat plate boundary-layer flows with different waU
thermal boundary conditions and free-stream Much numbers.



Comparisonsammadewithvarious mean flow measurements
and with calculations of the k-co model. Good agreement is
obtained between the present calculations and measurements. In
particular, the log-law for compressible flows is recovered and
the slope of the log-law is found to be fairly independent of free-
stream Mach number for the range, 0 < M_ < 10, tested. Even
though k-co model gives a correct pre_liction of u+ versus In y+,
their velocity comparison in terms of <U>/U,. versus y/6 sho_s
substantial discrepancy with data. The discrepancy increases
with increasing Much number and can be attributed m a nea.r-
wall behavior that is not asymptotically correcL

The following conclusions can also be drawn from the
above analysis. Firstly, Morkovin's hypothesis is valid up to a
free-stream Mach number of about 5 for flat plate boundary-
layer flows with adiabatic wall boundary condition. This means
that the effects of fluctuating density arcbecoming more and

more important as IPL. increases beyond 5. Secondly, the
assumption of a constant turbulent Prandtl number is not
appropriate for cooled wall thermal boundary condition. The
reason is further reduction in turbulent mixing due to a cooled
wall and this effect is not correctly accounted for in a constant
turbulent Prandtl number approach. Most likely a heat flux
model is required if the characteristics of cooled-wall
compressible boundary-layer flows arc to be predicted correctly.
Thirdly, it is important to model the near-waLl flow correctly if
the overall boundary-layez characteristics are to be predicted with
confidence. This point is substantiated by the k-e model
calculations where all additional compressible terms in the
turbulence equations am neglected. These results arc in good
agreement with measurements even though they differ slightly
from the predictions of k-e modeL/l where all the additional
terms are retained. In other words, an asymptotically consistent
near-wall model is more important to the prediction of
compressible boundary-layer flows than the inclusion of
fluctuating density effects in the modeled equations. Fourthly,
the predicted near-wall characteristics arc very similar to those
calculated for incompressible flows. In the range of free-stream
Mach number tested, the calculated near-wall characteristics arc
essentially independent of Mach 'number and wall thermal
boundary condition. Very near the wall, viscous diffusion of k
is balanced by the dissipation ofk. Beyond y+ = 15, dissipation
is balanced by mean shear production of k. "In between these
two regions, viscous and turbulent diffusion of L production of
k and dissipation of k arc of importance in the budget of k. The
additional compressible terms in the k-equation are essentially
negligible in the near-wall region up to y+ --- 50. This is the
reason why the model also performs well when the additional
compressible terms are neglected in the equations. Finally, the
term _k/_y in the mean energy equation makes a significant
contribution to the calculated Cf in the highly cooled waLl case.
Traditionally, this term is neglected. However, presont analyses
show that even though it is relatively unimportant in flows with
adiabatic wall boundary condition, it cannot be neglected in
flows with a highly cooled wall. The inclusion of this term
degrades the prediction of Cf. It is believed that the degradation
is a result of an incorrect modeling of turbulent heat flux.
Therefore, improvements should be directed at the relaxation of
the constant turbulent Prandtl number assumption.
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Case M** 0_/0 r Model ak auvX104

55010504 2.244 1.0 k-e modeV1 0.0987 7.167

avoxl07 k÷/e+(y+)2

-0.465 0.50

55010504 2.244 1.0 k-e model/2 0.0992 7.198 -0.998 0.50

53011302 4.544 1.0 k-¢ modeV1 0.0824 6.700 -6.44 0.50

53011302 4.544 1.0 k-e model/2 0.0836 6.760 -11.79

73050504 10.31 1.0 k-e model/l 0.0741 6.630 89.5

73050504 10.31 1.0 k-¢ model/2 0.0771 6.740 -131.0
T

59020/05 5.29 0.92 k-e model/1 0.0784 6.120 11.1

59020105 5.29 0.92 k-¢ model/2 0.0788 6.140 -5.88

0.50

0.50

0.51

0.50

0.50

Table 1. Asymptotic near-wall behavior of the turbulence properties.
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ANALYSIS OF THE EFFECT OF INITIAL CONDITIONS

ON THE INITIAL DEVELOPMENT OF A TURBULENT JET

Soong Ki Kim," Myung Kyoon Chtmg," and Ji Ryong Cho*
Korea Advanced Institute of Science and Technology, 5eoul, Korea

The effect of the initial conditionat the jet exit on the downstreamevolution,pat_cularlywithinthe potential
core tengnh, were numerically investigated as well as with available experimental data. In order to select most
dependablecomputationalmodel for the presentnumerical experiment, a comparative study has been performed
with different turbulence models at k-e level, and it was found that the k-e-y model yields superior prediction
accuracy over other conventional models. The calculated results show that the potential core length and the
spreadingratethe initial mixinglayeraredependenton _te initial length scale aswell as the lurbulentkineticenergy
azthe jet exh. Such effect of the initiallength scale increase=withhigherinitialturbulence level. An empirical
parameterhas beendevisedto collapse the calculateddataof the potentialcoreI_ and the spreadingratewith
varioush_i,._lconditlot_ontoa s_le curve.

=

Introduction

It is well known that the potential core length, the
spreading rate and the asymptotic peak turbulence intensity
vary widely from experiment to experiment in the jet initial
region) a Husaln and Hussain _ showed experimentally that the
boundary layer state, laminar or turbulent, the momentum
thickness and the fluctuation level in the initial boundary layer
at the jet exit were important factors which govern the
downstream jet development. Gutmark and He' found that
such scatter of the experimental data stems fTom spatially
coherent disturbances in individual facilities. They considered
the initial instability frequency as one of the important initial
conditions affecting the jet evolution.

In addition to the condition of the initial boundary layer,
however, since the jet exit flow field is composed of the
boundary layer near the inner wall and the core flow in the
central region, the turbulent state of the initial jet core must
also affect the downstream jet evolution process. Turbulent
intensity in a laboratory jet is typically 0.5% or less, while
those in practical turbojet and turbofan engines have been
reported to be between 3% and 15%: Thus, in the initial
region of the jet flow, the mixing layer and the turbulent core
should interact with each other. If the level of the initial core
turbulence is low, the effect of the interaction may be small or
negligible. However, if it is sufficiently high, the flow field in
the initial region should be regarded as a complex flow
according to Bradshaw's category.*

Vlasov et ai. _ reported that the potential core length
significantly decreases with increasing initial core turbulence.
More elaborate experiment was performed by Raman et ale
who kept the exit mean velocity profile and the boundary layer
state nearly the same, but varied the core turbulent intensity
between 0.15% and 5% by using various turbulence generating
grids. From the variation of the mean velocity along the jet
centerline, they concluded that the turbulent intensity in the
initial core has only small effect on the jet evolution.
However, considering that thefreestream length scale is an
important parameter for the development of the turbulent
boundary layer, which has been vividly demonstrated by
Hancock and Bradshaw =, the length scale of the core
turbulence should be considered as an additional controlling
parameter for the downstream jet development.
Unfortunately, however, experimental data of the initial length
scale or dissipation rate are almost unavailable from published
reports. Therefore, in the present study, a computational
analysis is carried out to systematically investigate the effects
of the turbulent intensity and the length scale in the initial core
region on the initial development of a turbulent jet flow.

* Graduate student,Department of Mechanical Engineering.
** Professor, Deparanent of Mechanical Engineering.
+ Present affiliation : Research Engineer, Korea Institute of

Machinery and Metals.

Since most previous computational studies have been
concentrated on the flow field in the self-preserving region,
thoseon thejetinitialregionareonlyscarcelyfoundinopen

literatures.IslamandTucker9computed theturbulentflowof
a jet initialregion by a revisedmixing lengthmodel.

Meanwhile,computationalturbulencemodels suchask-eand
Reynolds stressmodels have serious"anomaly problems"

when theyareappliedtocomputeturbulentfrecshearflows:
"round-jet/plane-jetanomaly"t°and plane-wake/plane-jet
anoma/y''_j.Recently,Cho and Chung12developeda new k-

e--?model and made considerableimprovement in the
predictionaccuracyforfreeshearflows intheirsimilarity
regions.

In the present study, firstly, three variants of k-e model and

the new k-e-y model were applied to the initial region of the

round and plane jets to prove that the k-_--? model is more

reliable than other models. Secondly, using the k-t-'? model
the effects of the initial core turbulence, i.e. the turbulent
kinetic energy, and the dissipation rate or length scale are
systematically investigated, and the results are compared with
available experimental data in the initial jet region.

Computational Models

In order to numerically examine the initial jet evolution
process which exhibits quite complex nature of turbulence, a
dependable computational model must be employed. As is
well known, the k-e model has a number of variant forms
which has been formulated to remedy the vulnerable model
coefficients of the standard k-¢ model under certain
circumstances. One of such weaknesses in computation of
free shear flows has been expressed by a term "round-jet /
plane-jet anomaly ''1°. Specifically, the predictions of a round
jet and a plane jet with the same model constants show
inconsistent results : If the model constants are adjusted with
reference to the spreading rate of the plane jet, the computed
spreading rate of the round jet is higher than that of the plane
jet by as much as 25% whereas most experimental data
demonsu"ate that the round jet spreads slower than the plane jet
by about 15%.

Pope _° attributed the anomaly to the neglect of the mean
vortex stretching effect in the source term of the dissipation

equation,and introducedavortexsu'¢tchinginvarianttermZ -=

(k le)_D_j/2)S,, where I2_ and S_am therateofmean rotation
and rate of mean strain tensors, respectively. Note that the

invariant Z has a positive value in the round jet whereas it

vanishes in the plane jet. Thus, the modified form of k-8
model suggested by Pope is as follows :



=Dk _ [Vt_k ]

D_ b [ Vt _ e2 P

#%2 -- 8Ui

vt= c_ "_ p = _ uiuj._.xj

Here the model constants are ; C,=0.09, o,=1.0, (_,=1.3,

C,I=1.45,Ca=1.90, C._=0.79.
Hanjalic and Launder _' found that the rateof spectral

energy transferacrossthe wave number space,which isnearly

equal to the dissipationram, is significantlypromoted by
ir_otationaldeformation which is associamd with normal

strains.They alsonoted thatthe irrotationaldeformation has

larger value in the round jet than in the plane jet,which

stimulatedthem to propose the following variant of the k-¢

model to solve the "round.jet / plane-jet problem.

"_-= _-_ _"_j + Pk,,+ Pk,n- £ (3)

D£ _ [ v, 8£ ] _[ Pk,, Pk.n 1D-_=_xj _'_c_xj + Cc,-'_--C_+C_'- _- (4)

8U i _ 8Ui
Pk.,= - UiU;"_'--(i_j), Pk.n

' Oxj = - _uj'_'xj (i=j)

k 2

U2-v 2= c_k , Vt =c}_ T

where C_=0.09, ¢3_=o,=l.0, C,,=1.44, Ca=1.90, C,_--=4.44,

Co,---0.33.
Quite recently, Cho and Chung n showed that, although the

above two variants improve the consistency in predicting the
plane jet and round jet with varying degree of accuracy, such
modifications do not yield any better solution to the "plane-jet
/ plane-wake anomaly problem" which was raised as another

computational anomaly through AFOSR-HTTM-Stanford
Conference on Complex Turbulent Flows in 1980." With a
lengthy discussion about the role of intermittency in the
mixing layer between the shear flow in the core region and the

ambient potential flow outside the jet boundary, they proposed

a new k-e-y equation model as follows ( See Cho and Chung':

for details ) :

Dk 8Iv, 8k ]D-_"= _Xj C_-__xj + Pk" + Pk'n- e (5)

De b [vt _e ] _[ Pk,+3Pkn+ c., .

+ C_Z + C_4F] (6)

D-7= _xj (I-?) +Cs,.Z(l-y) ,_

+ cz2 "7 _ - C,3? ( 1- T ) _"r (7)

( k3 1-'-"_Y /_T bY ) k2

k z_ Ui 8Ui
F=

J

Proposed model constants are; C_=0.09, C_--0.1, c_= cry=

oz--1.0, C_,=1.44, C,,=1.92, C_=0.30, C_=0.10, Cz,=l.6,

C ,=0.15, C#=0.16.
"For more detail computation, the Reynolds stress model

may be utilized. However, it has been widely demonstrated

that when it comes to compute the simple free shear flows, the
Reynolds stress model yields similar prediction accuracy as

the k-¢ modeP _, and no attempt has been made at modifying

the Reynolds stress model to solve the anomaly problem. For

this reason, it was not included in the present numerical
investigation

InitialConditions and Computational Method

Itisassumed thatthevelocityprofileatthe exitconsistsof

two regions:a boundary layernear the innerwall and the core

layer in the centralregion. The initialboundary layer is

furtherassumed to be in a fullydeveloped turbulentstate.

Thus, allturbulentparameters in thatregioncan bc estimated

by _hoseof a fullydeveloped turbulentboundary layerover a

flatplate. In practice,Husain and Hussain showed thatthe

mean velocityand the turbulentintensityprofilesin the initial

boundary layerat the jetexitare close to the flatplatedam.

Therefore, we picked up the mean velocity profileand the

turbulentkineticenergy profilefrom KIebanofPs experiment

on a flatplate.And the dissipationratedata were calculated

by assuming a localequilibrium. There have been a large

number of jetexperiments,however, unfortunately,we can not

findany experiment which measured the initiallevelsof the

turbulent kinetic energy and the dissipation rate in the core

region, simultaneously. Therefore, we are managed to assume

them within a physically reasonable range.

In the core region at the jet exit, the mean velocity, the

turbulent kinetic energy and the dissipation rate were assumed

uniform, but with their magnitudes being different for different

cases. In order to specify the relative magnitude between the

turbulent kinetic energy and the dissipation rate, i.e. the initial

eddy viscosity level _/e, in a physically realistic range, the

data from a grid-generated turbulence were adopted. Comte-

Bellot and Corrsin '_ presented various data set of the energy

decay of the grid turbulence. Fig.l represents the relations

between the length scale and the intensity of turbulence for

three cases in Comte-Bellot and Con'sin. From these relations.

a total of 20 pairs of data were used to specify the initial

turbulent kinetic energy and the dissipation rate in the core

region at the jet exit. Since the boundary layer profiles are

nearly invariant within 50% of the boundary layer thickness, 8,
the initial profiles of the mean velocity, the turbulent kinetic

energy and the dissipation rate are smoothly connected in the

region 0.5(5-&

The upwind finite-difference procedure _ was used to solve

the system of the governing equations. Predictions of the jet

flow reported below were obtained by using 200 cross-stream

nodes, 50 uniform nodes inside the jet exitdiameter and 150

stretched nodes outward. The jet exit mean velocity Ue was

20 m/see and jet exit dlameter D or width H was 10 cm. hence,

Reynolds number based on D or H was _Utl.3 ×I0 s. Initial

boundary layer thickness and the momentum thickness were

assumed 6ram and lmm, respoetively. The turbulent kinetic
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energy and the dissipation rate were estimated by assuming u*

- 1.0 m/sec.

Results and Discussion

Performance Tests of Computational Models

In the present investigation, the standard k-_ model l,,

modified k-_ models by Pope. and Flanjalic and Launder. and

the k-E-y model were applied to compute the initial flow field

of a plane jet and a round jet for a case with ,¢r_JU e -0.01.

Le]D-0.2 in Fig.l. Table.l represents the predicted potential

core lengths and spreading rates. The spreading rate can be

defined in various ways. The shear layer width at a certain

downstream location x is determined by either B I'Y,J'Y_ or

B_-y,.cy_.)_, and the vorticity thickness _®dcfined by -Ue/(O

U/Oy),_,where y..j . Yo., and Yu.,s indicate cross-strewn

locations from the jet centerline where the local mean velocity

is 10%, 90% and 95% of the centerline mean velocity,

respectively. The symbol x p represents the potential core

length.

By comparing the predicted values in Table.l. it is

concluded that the k.E-y model provides the most reasonable

predictions for all jet parameters. Specifically. the prediction

of the potential core length is remarkably improved, which can

also be appreciated from Fig.2 and 3. In Fig.3, the

experimental data show that the turbulent kinetic energy at the

jet centerline increases monotonically in the potential core

region. However, all models failed to reproduce such

increase. From *,he exact turbulent kinetic energy equation, it

can be seen that, since there is no mean shear in the potential

core, the turbulent kinetic energy should simply decay. Thus,

it is likely that either a certain unknown mechanism exist in

the core region or the real flow had some initial shear at the jet
exit. Hussain and Husain _ explained that this occurs because

the core potential fluid is exposed to a 'massaging' effect of

motions in the mixing layer all around of, which argument

however cannot be supported by the governing field equation.

Nevertheless, the k-e-Tmodei predicts very fairly the variation

of the turbulent kinedc energy along the centerline except in

the potential core region.

Fig.4 represents the mean velocity profile in similarity

coordinate at about the end of the potential core region.

Before the end of the potential core region, the initial mixing

layer attains similarity. This can be further clarified by the

fact that the shear layer thickness varies linearly J. In all

computations of the mean velocity, the turbulent shear stress

Table 1 Potential core lentnhs and initial spreading rates of jet flows

( ,_e/Ue=0.01, Le/D=Le/H=0.2 )

dB t riB: dSw

Flow Model and experiment xp -_- _

round

jet

k-e-y 4.57 D 0.163 0.175 0.141

Hanjalic and Laundez's k-E 8.33 D 0.154 0.158 0.076

Pope's k-e 7.89 D 0.146 0.152 0.112

Standard k-_ 7.21D 0.155 0.162 0.128

experiment 4.90D xl 0.16-0.165 _ 0.158 - 0.202 _ 0.112-0.175'

k- ¢- 7 4.80 H 0.163 0.177 0.155

plane I-lanjalic and Laund_r's k-t_ 10.10 H 0.163 0,168 0.110

jet Standard k-e 8.74H 0.151 0.159 0.136

experiment 4.50H _9 0.155 -0.180 _ 0.155-0.179 _
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and the turbulent kinetic energy, the k-E-7 model outperforms

over the k-t models as can be men in Figs.4,5 and 6. The

better performance of k-E- 7 model in the core region( (Y'Yo.s)l

(yu.:y=.9)<0) may be attributed to the correct representation of

the interaction between the mean velocity gradient and the

intermirr=ncy gradient by the k-E-T model (see, for details. Cho

and Chung). - -

Effect= of th_ Initial Condition= on Ih¢ Downsm_am

Evolution

0 er= inve= ga=thee.==oithei= al,o itionson
the jet downstream development, the k-¢-_f mode! was utilized.

The initial conditions for the present computation were

selected from FIgA as discussed previously. Fig.7 reveals that

the potentialcorelengthissmallerforhigherinitialturbulenc_

level, but that the centerline mean Velochy decay rates after

the core region are nearly the same for all cases. Computed k

variations along the centerline in Fig.8 agree well with

experimental data only after the core region. For initially high
turbulence level, experimental data of the turbulent kinetic

energy decay near the exlt and ihen increase monotonically,

but the computed 0n¢ decays continuously in the potential

core. The discrepancy between these two observations is not

yet understood.

The variations of the potential core length and the

spreading rate with d]Herent initial condldons are represented

in Fig.9. If the level of the initial turbulent kinetic energy is
increased, the potential core length is reduced and the
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6.8xI0 4, m ; Ru=13.Sxl0 4 : (a) the potential core length ; (b)

the spreading rate.

spreading rate becomes large. Also, it can be seen that the

effect of d_¢ initial length scale is such that increasing initial

length scale shortens the potential core length and augments

the spreading rate. Moreover, such effect of the initial length

scale is magnified at increased initial turbulence level.

Consequendy, the mixing is promoted by increasing both the

initial turbulent kinetic energy and the initial length scale.

This Is because larger core length scales penetrate further into

the mixing layer. Similar conclusion can be drawn from the

experiment of Hancock and Bradshaw =, who carried out an

experiment of the effects of freestrcam turbulence on a flat

plate boundary layer.

Finally, an attempt is made at devising by trial-and-error to

collapse the calculated data into a single correlation. The

parameter found in this way is shown in Figs. lO(a) and (b),

where the number 80 is an empirically determined constant.

All data nicely fall on a single curve as can be seen in figures.

This parameter was found to correlate the plane jet data too

(not shown In this paper).
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Conclusions

The effects of initial conditions at the jet exit have been

numerically invesdgamd. As a most reliable compumt/onal

model, the k-_=Y turbulence model has been selected by

comparing the prediction accuracies of various turbulence

models at k-_ level. It was found _ the standard form and a

couple of variants of the k-g model yield too lengthy potential

core and lower spreading ram. Whereas the k-_-y model

reproduce faithfully the turbulent flow field in the jet initial

region.
The calculated remits show that the potential core length

and the spreading rate in the initial mixing layerare dependent

on the initial length scale as well as on the turbulent kinetic

energyat the jet exiL Such effect of the initial length _e
increases with higher initial turbulence level. An empirical

parameter has been devised to collapse the calculated data of
the potential core length and the spreading rate with various

initial conditionsonto a single correlation curve.
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THE INFLUENCE OF BULGES ON BOUNDARY-LAYER INSTABILITY
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Abstract p i (

Local disturbances caused

by a spanwise surface corruga-

tion affect the position of the

boundary-layer transition, and

so the drag, of an object. This

premature transition from lami-
nar to turbulent flow is often

associated with a separation of

the laminar boundary-layer from

its surface (Fage, 1943). Also

the roughness-induced separation

bubble provides an important

link between the pressure and

velocity fluctuations in the

environment and the development

of the disturbance in the lami-

nar boundary-layer, i.e., the

receptivity problem (Morkovin,

1990; Bodonyi et al., 1989).

To investigate the influ-

ence of a laminar separation

bubble on boundary-layer insta-

bility, a separated flow gener-

ated by a velocity gradient over

a flat plate was analyzed by
direct numerical simulation us-

ing finite-difference solutions

of the Navier-Stokes equations.

The bubble acts as a strong am-

plifier of the instability waves

and a highly nonlinear flow

field is shown to develop down-

stream of the bubble (fig. I).

Consequently, the results of the
direct numerical simulation dif-

fer noticeably from those of the

classical linear stability theo-

ry proving the fact that the

nonparallel effects together
with the nonlinear interactions

are crucial to this flow devel-

opment (Fig. 2).

In the present paper, the

effect of physical perturbations

such as humps and hollows on

boundary-layer instability is

analyzed. This problem has been

considered theoretically by sev-

eral researchers (e.g., Nayfeh

et al., 1987 and 1990; Cebeci et

al., 1988). They used linear

stability theory in their ap-

proach which does not include

the nonparallel nor the nonlin-

ear effects. Therefore, to ac-

count for these important ef-

fects in studying flow over

humps and hollows the direct

simulation technique is being

implemented in generalized coor-
dinates.

0_ "-

! +
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Figure i. Normal velocity perturbation
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Figure 2. Spatial amplification rate

a_ for separated flow problem obtained

from direct _umerical simulation;
F = 1.4 x i0"
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Abstract

As the result of global, non-parallel flow stability analysis

the singlevalueof the disturbance growth-rateAnd respective

frequency isobtained. This complex value characterizesthe

stabilityof the whole flow configurationand is not referred

to any particularflow pattern. The global analysis assures

that allthe flow elements (wake, boundary and shear layer)

axe taken into account. The physical phenomena connected

with the wake instabilityare properely reproduced by the

globalanalysis.This enhance the investigationsof instability

of any 2-D flows,includingones in which the boundary layer

instabilityeffectsare known to be of dominating importance.

Assuming fully2-D disturbance form, the globallinearstabi-

lityproblem isformulated. The system of partialdifferential

equationsissolved forthe eigenvaluesand elgenvectors.The

equations,written in the pure stream function formulation,

are discretizedvia FDM using a curvilinearcoordinate sy-

stem. The complex eigenvalues and corresponding eigenvec.

totsareevaluated by an iterativemethod. The investigations

performed forvarious Reynolds numbers emphasise that the

wake instabilitydevelops intothe Karman vortex street.This

phenomenon is shown to be connected with the firstmode

obtained from the non-parallelflow stabilityanalysis.The

higher modes are reflectingdifferentphysicalphenomena as

for example Tollmien-Schlichting waves_ originatingin the

boundary layerand having the tendency to emerge as insta-

bilitiesfor the growing Reynolds number. The investigations

are carriedout fora circularcylinder,obI0ng ellipsisand air-

foil.It isshown that the onset of the wake instability,the

waves in the boundary layer,the shear layer instabilityare

differentsolutionsof the same eigenvaiueproblem, formula-

ted using the non-paralleltheory. The analysisofferslarge

potentialpossibilitiesas the generalizationof methods used

tillnow for the stabilityanalysis.

|ntroduction

The boundary layer stabilityanalysisbased on the so-

lutionof the Orr-Sommerfeld equation is a useful tool for

practicalanalysis of the lamlnar-turbulent transition.The

only competing method isbased on purely empiricalformu-

las,characterizedmost often by the shape parameter.

It is widely accepted that infinitelysmall disturbances,

although amplified according to linearstabilitytheory are

not able to onset the laminar-turbulent transitionunlessthe

amplificationreaches some value so a factorhas to be intro-

duced to correctthe resultsof the analysis.The eN method

has been develop to match the resultsof the empirical an

theoreticalinvestigations.

The larninar-turbulenttransitionisusually preceded by

the Tollrnien-Schlichtingwaves. Several receptivityexperi-

ments (Morkovin [4])were provided to understand the phe-

nomena of the Tollmien-Schlichtingwaves generation. It is

commonly accepted that Tolimien-Schlichtingwaves are ge-

nerated by an externalsource of disturbance (as for example

acousticexcitation)and that the non-parallelor non-unlform

effectsenhance the feedback between the wave and the ex-

citation.These non-paraileland non-uniform effectsare the

viscous boundary layer growth, the change of the surface

curvature and variationof the surface staticpressure. The

growth of the boundary layerisevident near the leading edge

of the blunt body, change of the surface curvature causes

the non-parallelityof the flow,surfacestaticpressure chan-

ges significantlyin the separationregion. Itischaracteristic

that these three problems were studied separately.Goldstein

[I]solved analyticallythe problem of evolutionof Tollmien-

Schllchting waves near the leading edge. The influenceof

sudden change of the geometry was investigatedby Gold-

stein [2]and Ruban [3].

These investigationshave one common feature - the as-

sumption ofslow variationof the flowinthe strearnwisedirec-

tionas necessary conditionforweakly non-parallelanalysis.

Ellipticnature of the Navier-Stokes equation describing

the flow suggest that the phenomena in Ml these regions are

not independent and influenceeach other. The question ari-

ses ifinteractionsof the leading edge geometry, boundary

layer and wake can be described by a single theory. The

natural choice is to drop the parallelflow assumption and

to treat the flow in allthese regions as a whole. The con-

sequence isthe attempt to use the non-parallelflow,global

stabilityanalysis. The non-paralleltheory was succesfuly

used to study the wake instability[10,9, 8, 7, 12]. There

are no theoreticallimitationsto apply thisanalysis also to

various geometries, as for example the airfoil.Because the

assumptions of the non-paralleltheory isa generalizationof

the classicalparallelflow analysis,one can expect that this

method isadequate not only fordetermination of the wake

instability.The instabilityof the boundary and shear layer

must be reflectedin the eigenvaiuesolutionsof the problem.

Governin_ equations

Linear stabilitytheory isconcerned with the development

in time and space of infinitesimalperturbations around a gi-

ven basic flow. If thisbasic flow is assumed to be paral-

lel,the classicaltheory of parallelshear flow stabilitycan

be applied. This method has been alsosuccessfullyused for

nearly parallelflowsforwhich the multiple-scalemethod, ad-

opting the concept of "slow" variationof flow parameters in

one direction,isvalid.In general,non-parailelcase only the

two-dimensionai theory talcinginto account the non-parallel

effectsis adequate. The equationsof thistheory are briefly

presented here.

The problem was solvedin the pure (Lagrangian) stream

function finitedifferenceformulation. This formulation, not



verycommon in the Navier.Stokes equations solvers,offers

certainadvantages forthe eigenvaiueanalysis.The primitive

variablesformulation ([9])resultsin much largermatrices.

Although the eigenyaluesare equal forvelocitiesand pressure

_ _ one h_ to deal with the fullsystem. This differencein size

iseven more evident because the matrix entriesare complex

for the eigenvalue analysis.

The unsteady incompressibleNavier-Stokesequations writ-
ten in the stream function formulation take the form:

¢;= ca (2)

We assume that the stream function ¢(x, y,t) isa sum of a

steady part ¢(z, y) and the unsteady disturbance ¢'(z,y,t) :

¢(x, #,t) --¢(z, y) + 6(z, y,t) (3)

The disturbance value is assumed to be small compared to

the stream function value. Introducing equation (3) into(I)

we obtain the nonlinear equation:

0 - I -

[_-_+(V x _).V-_--_eA ] A¢'+(V x _')-V(A_+A¢') = 0 (4)

Assuming a small disturbance allows the linearization of the

equation (4) i.e. we ignore the terms containing (_,)2 . In

the disturbance equation we separate the time and space de-

pendence:

g'(x, y, t) = ¢(x, y)e -'_' (5)

where

A= _(St + iv) (6)

Introducing the above relationship into (4) results in the li-

near partiM differential equation:

l 2-
iAA¢- (V x _). VA_- (V x _). VA_ + _-_eAt _o = 0 (7)

The fundamental difference between this equation and the

Orr-Sommerfeld one, which is derived in similar manner as-

suming the disturbance form as:

_;,(x,y, t) = ¢(_)e;(°_-_') (8)

is that, while Orr-Sommerfeld equation is an ordinary diffe-

rential equation, equation (5) is a partialdifferentialequa-

tion.This means differentmethods ofsolutionand numerical

problems encountered for the two cases.

To solve the problem for an arbitraryflowgeometry the

curvilinearbody fittedcoordinatesystem should be used for

the solution of the equation (i) and (7). For orthogonai

metric the followingrelationsaxe valid:

a_ =0 , i _=0 , i#j (9)

hence equations (1) and (7) can be written as:

o

The symbol Idenotes the covariantderivativeof the function.

For further specializedmetric tensor coefficients
i

g2_ = _(_)a(_,_) (12)

only g(_, r/) and its first order derivatives g,e and g,n have to

be calculated for any transformation.

Reynolds number Re and Strouhal number St are expres-

sed as:

dV= df (13)Re :-- _ " St := --
u ' U_

Discretized,equation (11) can be written as:

(A - AB)_o = 0 (14)

and represents the generalized eigenvalue problem.

For the eigenvalue calculations complex numbers can be split

into real and imaginary parts so that only the real arithmetic

has to be applied. Then the two parts of equation (2.10) may

be written:

A_, - A,B_o, + A,B_o; = 0

A_ - A_B_o, + A,B_o, = 0

Solution

(15)

Numerical discretizationand meshes

The discretizationof the Navier-Stokes equations (ii)

and disturbance equation (12) is accomplished using the fi-

nitedifferencemethod. In both cases the thirteen-pointsten-

cilwas used. The accuracy oft_ deriyativesforsuch a stencil

is maximum 0(h 2) for the fourth order terms.The unsteady

versioncontains implicitstepping in time.

For all the calculationsthe orthogonal O-type mesh ob-

tained by the conformal mapping is applied. The Karman-

Trefftztransformation was used for the airfoilcalculations.

The metric coefficients (13) are expressed analytically by

means of symbolic manipulation program to assure the ma-

ximum accuracy.

Boundary Conditions

For the steady Navier-Stokes equation solution the follo-

wing boundary conditions are used:

=0 , ¢.,=0 on the body (16)

D_,
D"--_= 0 , _b,, = Ww,,,, in the far field (17)

The collocation of the vorticity transport equation is made

only for the outflow. For the inflow the Dirichlet boundary

condition with the value of the potentiaI flow solutfofi is ta-

ken. The boundary conditions for the disturbance equation

(12) axe:

=0 , _,.=0 on the body (18)

D...._ = 0 D..._ = 0 in the far field (19)
Dt ' Dt

=_



The Dirichlet boundary condition (zero disturbance) is in-
troduced for the inflow. The introduction of the convective

boundary conditions appears to be an important factor of
improving the numerical accuracy, especially for the steady
and unsteady flow calculations.

Solution of the eieenvalue problem
In any eigenvaiue problem the question arises whether all

the eigenvalues are sought or whether determination of only
one or few is satisfactory. Solving similar problem Zebib and
Kim et al. [10,11] applied the QZ type decomposition from
the standard libraries. The advantage of finding all of the
eigenvalues is that no guess values have to be made. For rela-
tively small matrix size, resulting from the use of the spectral
method or crude FDM meshes tkls procedure is acceptable
and was used in our earlier investigations [7]. Jackson ap-
plied for the unsymmetrical, complex generalized eigenvalue
problem, appearing in the non-parallel flow stability theory
the inverse iteration method [9]. This concept is also adopted
in our present investigations. The eigenvalue, closest to the
guess value and the related eigenvector are both determined
at the same time. TiLlnow it is the only realistic method for
very large equation systems.

The following equations explain the principle steps of this
method. Applying the Newton-Raphson method to equation
(14) we obtain

(A - _(")B)(_¢") + d_(")) - d_(_)B_(") = 0 (20)

which can be written as:

(A - A(_)B)r/{"+1) = B_(") (21)

where the normalization is performed as follows:

_(-+U ffi _(_) + d_o{_) (22)

and

(e')_-- _,, (23)

denotes a unit vector. The correction of dA{") is calculated
from:

dA(,+l ) = 1
(er)rr/¢n+l) (24)

The iteration process involves the repeated solution of the
equation (21), normalization of the eigenvector and correc-
tion of the eigenvalue. This process continues until conver-
gence of the eigenvector and eigenvalue is achieved. The pro-
cedure, which consists of LU decomposition at each step with
a quadratic rate of convergence, was replaced by a method
using only one LU decomposition. The convergence is then

only linear but the back-substitution time is significantly re-
duced compared to the decomposition time, justifying many
iteration steps:

(g - XoB)-_ B_ (') = r/("+t) (25)

The scheme is found to be convergent to the eigenvalue clo-

sest to Ao and to produce the appropriate eigenvector.

Numerical results

The linearstabihtyanalysisconsistoftwo steps.First

thesteadysolutionoftheNavier-Stokesequationshas tobe

found.Inpracticeboth,thesteadyand unsteadysolutionof

Re = 30

Re = 40

Re = 50

Re = 60

Figure 1: Steady flow solutions for the circular cylinder flow

the Navier-Stokes equations was performed. The unsteady
one served as the reference data for the comparison to the re-

sults of eigenvalue analysis. It is characteristic that obtaining
of the unsteady solution near the critical Reynolds number
is difficult. For symmetrical flow some external forcing has
to be introduced. The response of the flow field is dependent
on the way the disturbance is introduced. The nearly neutral
stability of the flow caused that the influence of the distur-
bance dominates the flow even after a long time. In this
case the purely numerical aspects of the computation are of
much greater significance. Also unsymmetrical flows near the
critical Reynolds number requires a lot of CPU time to be-
come fully unstable. The flow patterns of initial periods are

different from the "fully developed" unsteady ones (Fig.12).
Near the critical Reynolds number such patterns can persist
over a long time requiring significant amount of CPU time

to obtain the real periodic state. Some codes fail to carry
out the calculations long enough in time and due to unphysi-
cal boundary conditions the solution breaks down when the

vorticity reaches the outflow boundary. The unsteady simu-
lation for the Reynolds number higher than the critical one
is easier. For this reason always the higher Reynolds number

unsteady solutions were taken for the comparison with the
stability analysis.

In the linear stability theory the Navier-Stokes equati-

ons are linearized about a steady flow. The quality of the
steady solution has then the direct influence on the eigen-
value analysis. The accuracy of the solution is the best for

the circular cylinder flow and is decreasing for the ellipsis
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Figure 2: The growth-rate and the StrouhM number for the
circular cylinder flow.

and airfoil flow where leading and trailing edge can cause
numerical problems even for meshes generated by the con-
formal mapping. In case of limited computer resources it is
satisfactory for the numerical simulation of the flow to use

relatively crude mesh spacing on central, upper and lower
parts of the airfoil. In this case the gradients of the quan-
tities along the boundary layer are not very large. For the
eigenvalue analysis however, also the fine discretization in

this direction is very important. The attempt to detect the
ToUmien-Schlichting waves necessities at least several tenth
of points for 'one period preserving also the fine discretiza-
tion in the radial direction. The compromise for these two
contractictory requirements was partly obtained by calcula-
tion of the steady solution on one mesh and interpolation of
the result on another mesh, more suitable for the stability
calculations.

The eigenvalue solution was-calculated forthe external
flow around the circular cylinder, ellipsis and an airfoil. The
circular cylJn-der 8erred as the source of reference data, for

the validation of the program because a lot of numerical and
experimental results is Svaiable. The only existing results

for non-parallel analysis are the circular cylinder results [10,
9]. The flow around the ellipsis was investigated to analyze

different eigenmodes. The modes characterized by higher
frequency are clearly appearing for high Reynolds numbers.

Because of the extremely long wake for Re > 200, causing
several numerical difficulties such an analysis could not be
carried out for the circular cylinder. Finally the NACA 4412
airfoil flow for a = 0° and a = 150 was shown to examine the

potential possibilities connected with the eigenvalue analysis
of this geometry.

Circular cylinder results
For the symmetrical flow around cylinders it is always,

a)

Figure 3: Real (a) and imaginary (b) part of the eigenvector.

theoretically, possib!e to obtain a steady-sLate solution, even
above the critical Reynolds number. The streamlines pat-
terns obtained for the steady flow around a circular cylinder
are shown in Fig.1. These results served as the input data
for the eigenvaiue analysis. The guess value for the Strouhal
number is 0.12 and the growth-rateO. The result of the cal-
culation consist of the complex eigenvalue for each Reynolds
number together with a complex eigenvector. The growth-

rate and the corresponding frequency as the function of the
Reynolds number is shown in Fig.2. Some results of our pre-
vious investigations using the QZ method are also plotted.
The results of these calculations are compared with those

obtained by Zebib [10], which uses the non-paral_lel analysis
in the spectral stream function formulation together with a

full-matrix eigenvalue solver of a QZ-type. For the inverse
iteration method, used in our computatious, the critical va-
lues are Rec = 46.23 and Stc = 0.1345.

The real and imaginary part of an eigenvector for the in-

creasing Reynolds number is depicted in Fig.3. Over a wide
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Figure 4: Eigenvector velocities (imaginary part): (a) below

_o (_ = 40) (b) above _o (_ = _0).

range ofReynolds numbers the eigenvector(disturbance)pat-

terns are very similar,showing the physicalaspects of the

phenomena to be already present in flows of fairlysmall

Reynolds number. The increase in Reynolds number allows

thesemodes to crossthe zero-growth-ratelineand emerge as

instabilities.The problem arisesifthere isany differencein

eigenvector patterns bellow and above the criticalReynolds

number. It is known from the parallelflow stabilityanaly-

sisthat the wake stabilityisgoverned by itscharacteristics

in the vicinityof the rear stagnation point. Careful study

of the eigenvectorvalues near the cylindershows (Fig.4)the

differencein the disturbance patterns above the Rc_. This

enhance the onset of the Karman vortex street.

To evMuate how realisticare the obtained ei$envalueso-

lutionsthe disturbance issummed with the steady-statesolu-

tionforRe = 90. As the referencethe unsteady flowsimula-

tionforRe=f00 istaken (Fig.5).The saxneperiodicpatterns

are presentin both pictures.This proves thatforthe cylinder

i_owinstabilitythe non-lineareffectsare not significant.

Ellipsisflow

Following the approach for the circularcylinderflow the

ellipticcylinderwas analyzed. It isknown from experiments

and non-parallelflowstabilityanalysisofJackson, performed

for the bodies with differentcross-sectionsthat the proper

scalingof Strouhal number is based on the dimension per-

pendicul_ to the main flowdirection.For such • scalingits

value isnot much differentfor variousshape of the cylinder.

The criticalReynolds number reflectsalsothe overal]shape

of the body. The relationbetween the axis ratioof the el-

lipsisand the criticalReynolds number was studied earlier

[8].For the oblong ellipsissituated parallelto the flow di-

rectionthe criticalReynolds number isincreasingwhile the

slope of the growth-rate curve becomes smaller,comparing

to the circularcylinderresults.As can be expected the Kar-

man vortex streetmode results_ffer only slightlyfrom ones

obtained for the circularcylinder.The eigenvectorpatterns,

growth-rate and frequency relationsfor increasingReynolds

numbers are similar to the circularcylinderones. The in-

terestingresultsare obtained alsofor the Reynolds number

higher than the criticalone. We assume that the steady flow

solutioncoincideswith the realone inthe boundary layerand

T=2.4 ------

- _ :./ - ___ _,_,,_ ,_ ....... ,_-............

_ . _/___ .... .,

.... ._ ...

_...---

-T___=1"4'4 _ ___ \_,l'_II_',',..

-
T = 20.0 _ _-_'"_ '
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a) b)

Figure 5: Karman vortex street(a) superposition of the di-

sturbance and steady solution,Rc = 90 (b) unsteady simu-

lation,Re = I00



Figure 6: Higher mode eigenvector (real part) for the 1:5

ellipsis fiow,/_ = 200
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theshearlayernearthebody,evenfortheReynoldsnumber + :::-,=: _ _ _:_ ......
higher than the critical one. The j_stjfication for such an . Figur_e7: The gr0wth-rate and the Strou_al nu_mber for the
assumption are the experimental investigations of Kourta et for 1+i,5eRipsis flow I : +

al. [131 and Unal and Rockwell [14] in the higher Reynolds ...................
number range the Karman vortices are formed not directly values are small, containing the boundary, layer, separation
behind the cylinder. Between the cylinder and the vortex and wake region and the "stiff" part where the stream func-
street a dead fluid zone is found, bounded by two nearly tion values are large in comparison to the disturbance. It is
parallel shear layers. As the Reynolds number increases the obvious that when adding the disturbance and steady state
length of the dead-fluid zone decreases and the location of solution only the "soft" part is "modulated" while the "stiff"
the first instability waves in the shear Igyer moves upstream.

According to the results of the parallel flow stability analysis
the unsteady behavior of the fluid is governed by the flow in

direct neighborhood of the body. This conclusion allows us
to cut the steady solution and limit the computational do-
main. The fact that the length of the wake, obtained as the
steady-state solution of the Navier-Stokes equations exceeds
the assumed "infinity" distance (the wake end is outside the

computational domain) is in context of the eigenvalue ana-
lys'isnot relevan=

This steadyflowsolutioniswas usedasthe baseforthe

eigenvaiueanalysis.The assumed guessfrequencyishigher
than forthe Karman vortexmode. The resultofthehigher

mode analysisisdepictedinFig:7and 8. The growth-rate

isa functionofboth Reynolds number and mode, so that

differentmodes arepreferentiallyamplifiedasthe Reynolds

number increases.InFig.7 thegrowth-rateand theStrouhal

number forhighermode isdepictedtogetherwith the first

one fortheellipsishavingthe axisratio1:5.The temporal

evolutionofthe wavesisshown inFig.8.The amplitudeof

the wave israisinginthe direction0f the separation,The

waveson theupperand lowersurfaceoftheellipsisareshif-

tedinphaseastheresultofsuperpositionofthe symmetric

patternofdisturbancesand antisyrnmetricstreamfunction.

The characteristicpatternsforallhighermodes investigated

arethefamilyofbranchesofdisturbancestreamlineshaving

sequentiallypositiveand negativevalues.Each branch is

ended with a celllocatedinthe vicinityof the maximum

one ispracticallynot influenced(Fig.8).Forthisreasonthe

considerationsconcerningthe eigenvectorpatternsoutside

the "soft"regionhave verylimitedpracticalmeaning. This
conclusionisconfirmedby numericalcalculations,showing

thatthe "soft"regionsofthe eigenvectorarerelatedtothe

growth-rateand frequencyvalue.The restofthefieldismore

i;kdyinfluenced by numerical-aspects of the computations.
For the Blasius profile instability the Tollmien'Sc_chting

wave length is approximately six times larger than the boun-
dary layer thickness. Since the boundary layer on the ellipsis
is reiatively thick for the range of the Reynolds numbers ap-

plied in the calculations the detected T0ilmien-SChlichting
waves are also 10ng. The shorter ones, for higher Reynolds
numbers require much finer meshes, espedally in the circum-
ferential direction. The eigenvector ceLls, located on the ellip-
sis surface near the leading edge are shorter (in the circumfe-

rential direction) than the ones in the separation region. For
a given constant frequency which is the same for the whole
field it can mean only that the wave propagates slower near
the leading edge and faster in the separation region. The
propagation along the shear layer of the wake has approxi-
mately constant velocity. All the found eigenvalues for the

Tollmien-Schlichting mode were damped ones. The question

arises if the Tollmi'_en-Schli_ting wave, considered globally,
in the boundary layer and propagating further along shear
layer can become amplified without external excitation. The

growth-rate is raising with the increasing Reynoids number
and one can expect that the higher mode wave will become

velocity gradients in the boundary or Shear layer' Theefgen: 0nly=Siightly damped or even amplified for the high+_enough

vector patterns should be analyzed in connection with the Reynolds numb6r. ....
steady flow solution. The disturbance is added to it to ob- For any flow around the cylinder exist many eigenmo-
rain the unsteady' flow. In the steady solution two regions des. In practice near any given frequency exist an eigenvalue,
can be distinguished - "soft" part where the stream function mostly with such an low growth-rate that it is unlikely that
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Figure 8: Tollrnien-Schlichting waves - temporal evolution
for the 1:5 ellipsis flow, Re = 200

Figure 9: Steady flow solutions - NACA 4412, a = 150

it can emerge as the instability. Similar conclusions can be
drawn on base of the Kim [11] results.

Different eigenvectors can be classified into at least two
groups. One characteristic eigenvector pattern is connected
with the onset of the Karman vortex street. Fig.3 shows this
mode for the circular cylinder. Jackson [9] has shown the
same patterns. Similar mode was detected by Karniadakis et
al. [5] who investigated the flow around the circular cylinder

placed in the channel bounded with two parallel plates. This
mode is called there the central mode and dominates for the

cylinder placed near the symmetry axis. Moving the cylinder
toward the wall causes switching to the "wall mode" which is
related to the Tollmien-Schlichting waves. For the external
flow around the cylinder the "wall* mode forms similar cells
located however on the body and in the shear layer.

The airfoil flow

The another cylinder flow which was considered is the
airfoil flow. As the example geometry the NACA4412 airfoil
is taken. Two different angles of attack were considered.
For a -- 15o the stall is evident and the regular Karman
vortex street appears for high enough Reynolds number. The

numerical simulation of such a flow was performed by Shfitz
[6]. For a = 0° dominating phenomena take place in the
boundary and shear layer.

First the steady flow solution has been found (Fig.9). The
character of the steady flow solution for a = 150 is different

from the circular cylinder one. (Fig.l, Fig.9). While for the
circular cylinder the wake consist ot two bubles, there is only
one for the airfoil flow.

The eigenvalue analysis gave the fastest growing mode
(Fig.10).

l%r a = 15o the flow becomes unstable at Re = 335. The

eigenvector patterns are in this case also very similar to ones
for the circular cylinder (Fig.11). In Fig.13 the comparison
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Figure 12: Early time steps, NACA 4412 flow, Re = 1000,
unsteady simulation

b)

Figure 13: Real part of the eigenvector - airfoil flow, a = 15o
a) Re = 100, b) Re = 600
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Figure 14: NACA 4412 airfoil flow: (a) superposition of the
steady solution and disturbance fields, Re = 600, (b) Un-
steady simulation, Re = 1000
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Figure 10: The growth-rate and the StrouhaJ number for the
airfoil flow

between the real part of the eigenvector for Re = 100 and

P_ = 500 is shown. The wdue of the disturbance is growing
with the flow direction for both cases. It is normalized, so
the disturbance reaches the same maximum, located in the
vicinity of the outflow boundary. Because for Re = 100

(Fig.13) the growth-rate is negative the disturbance will be
damped after a long enough time. The flow for Re = 500
is unstable. The disturbance is growing both in time and in

the {tow direction. The characteristic feature for the higher
Reynolds numbers flows is the much larger amplitudes of the
disturbance in the wake close to the airfoil.

To compare the obtained eigenvalue analysis results with
the real flow patterns the unsteady simulation was used. The

simulation was performed for Re = 1000. The early stages
of unsteady simulation exhibit patterns significantly different
from the "fully developed" ones (Fig.12). This discrepancy
is even greater in the neighborhood of the critical value. For

this reason to compare with the eigenvalue analysis one pe-
riod was taken after long enough time (t = 56.8 to t -- 64.0).
Earlier periods are "spoiled" by the initial {low development.
The comparison of the flow patterns for Re = 600 (eigen-

v_lue analysis) and Re = 1000 (unsteady simulation) show
very good qualitative agreement. All the mechanisms of the
vortex shedding are properly reproduced. This fact is one

more proof that the Karma- vortex street, especially near
the body hM the linear character.

For the angle of attack equal 0° till Re = 800 exists no
separation on the airfoil. The higher mode solution forms two
row of cells (Fig.15) which are close to the airfoil only near the

leading edge. When added to the steady flow solution only

the shear layer behind the airfoil is effected (Fig.lfi). The
flow is stable because the growth-rate is negative, but if it

becomes unstable it is the Kelvin-Helmholz type of instability
of the shear layer. For increasing Reynolds numbers the cells

Re = 500

Re = 600

/

\
\

a) b)

Figure 11: Real (a) and imaginary (b) part of the eigenvector
- airfoil flow, a = 150

are moving closer to the airfoil. The disturbances form now

ceils attaf.hing the airfoil and forming the "waLl"mode. The
boundary layer is now "modulated" in the way simlar to the
ellipsis flow. For a -- 0° the KarmA- vortex street mode also

exists, although it is strongly damped for the small Reynolds
numbers.

Conclusions

It was shown that non-paraLlel flow stability analysis is a
method most suitable for determination of the wake flow in-

stability, several examples, calculated for different Reynolds
numbers and geometries ranging from circular cylinder to the
airfoil with the angle of attack, show that the method is a

general tool for prediction of the wake instability. It is of

advantage of this method, comparing to other numerical ap-



We belive that the method presented here will enable
the stability analysis of any flow as a whale, without brea-
king it into pieces or restricting considerations to single type
and that all instability phenomena are reflected in the non-
para_lel flow eigenvalue solutions.
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ABSTRACT

The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional
wing is studied experimentally. Results are reviewed from earlier two-dimensional tests which show the
character of the large leading-edge separation bubbles caused by the simulated ice accretion. Th e 2-D
bubbles are found to closely resemble well known airfoil laminar separation bubbles. For the 3-D
experiments a semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC
subsonic wind tunnel. The model uses a NACA 0012 airfoil section on a rectangular pianform with
interchangeable tip and root sections to allow for 0- and 30-degree sweep. A three-component sidewall
balance was used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil
flow visualization has been performed on the iced model and reveals extensive spanwise and vortical flow
in the separation bubble aft of the upper surface horn. Sidewall interaction and spanwise nonuniformity are
also seen on the unswept model. Comparisons to the computed flow fields are shown. Results are also
shown for roughness effects on the straight wing. Sand grain roughness on the ice shape is seen to have
a different effect than isolated 3-D roughness elements.

I. INTRODUCTION

The operation of aircraft in icing conditions
are affected by large performance penalties due
to ice accretion on unprotected surfaces.
Understanding the aerodynamic penalties due to
ice accretion on both lifting and non-lifting
surfaces is important since many components are
not ice protected. The initial cost, cost of
maintenance and weight penalty associated with
ice protection systems makes their use practical
on only the most critical components.

Most icing experiments, where aerodynamic
measurements have been made, have only dealt
with two-dimensional aircraft components. The
experimental work of Bragg et. al.1-, and the
corresponding computational research of
Potapczuk4, Cebect_, and Sanka_, have focused
on a 2-D NACA 0012 airfoil with a simulated glaze
ice accretion. Only the most recent work, Bragg
et. al._9 and Kwon1° have begun to investigate the
flow field about a wing with simulated glaze-ice
accretion. Bragg7 measured the surface

pressures on a straight aspect ratio 5 wing with a
NACA 0012 section and the simulated ice shape
of ref. 1 - 3. Kwon 1° compared Navier-Stokes
calculations to these data and showed good
results except near the root where the sidewall
boundary conditions differed. Sankar_ modeled
the tunnel sidewall and improved the prediction
near the root. Khodadoust _ and Bragg_ extended
the 3-D wing pressure measurements to include
the effect of wing sweep.

In this paper, the 3-D results on both the
straight and swept wing will be reviewed.
Emphasis will be on the experimental results with
some comparison to the computational data.
Flow visualization results will be presented which
clearly show the very 3-D features of the flow field
about the iced, swept wing. The effect of
sandgrain and isolated 3-D roughness on the
unswept wing are discussed. The two roughness
models are shown to have a very different effect
on the wing maximum lift coefficient. However,
first a brief review of earlier 2-D data taken using

Associate Professor, Department of Aeronautical and Astronautical Engineering, Associate Fellow AIAA.

"Graduate Research Assistant, Department of Aeronautical and Astronautical Engineering, Member AIAA.



this ice shape should help put the current 3-D
results in perspective.

II. EXPERIMENTAL PROCEDURE

The most recent tests were conducted in the
subsonic wind tunnel at the University of illinoisat
Urbana-Champaign. The tunnel is of conventional
design with approximately a three-by-four foot test
section, eight feet in length. The tunnel operates
at speeds from zero to 165 mile per hour at
Reynolds numbers of up to 1.5 x 106 per foot.
The tunnel is of open return type and uses four
turbulence screens and honeycomb in the settling
chamber to reduce tunnel turbulence to
approximately .07 percent. Earlier experimental
data were acquired in a similar, three-by-five foot
tunnel, at The Ohio State University.

The 2-D model used for these tests was a 21-
inch chord NACA 0012 airfoil. The first 15 percent
of the leading edge was removable so a simulated
ice accretion could be installed. The ice accretion
used was a simulation of that measured on a
NACA 0012 airfoil in the NASA Icing Research
Tunnel, Fig. 1. The icing conditions were a free-
stream velocity of 130 mph, angle of attack of 4
degrees, icing time of 5 minutes, volume median
diameter droplet of 20 microns, LWC=2.1 g/m 3
and a temperature of 18_ F. Under these
conditions the ice wh|Ch accretes is Considered

glaze. Data on the 2-D model was taken from its
approximately 95 surface pressure taps and a
wake-survey probe. Detailed measutern-ents Were
taken in the separation bubble with a split hot-film
probe 3 which could detect and measure reverse
flow.

The 3-D model used for this test is a
semispan wing with a chord of 15.0 inches and a
span of 37.5 inches when in the unswept position,
Fig. 2. The swept wing has a sweep of 30
degrees and a span of 35.18 inches. A NACA
0012 airfoil section was chosen to compare to
earlier 2-D tests. The model consists of several
components to allow wing sweep and to allow
different simulated ice shapes to be tested
through Interchangeable leading edges. Two
leading edges have been constructed for the
model ahead of the 15 percent station, a NACA
0012 leading edge and the simulated glaze ice
accretion.

The model is equipped with surface static
pressure taps. The taps are located in 5 major
rows plus a row on the tip section. The centertine

row of taps has 80 taps in the no-ice
configuration and 83 in the iced configuration.
The other 4 rows on the main element have 40
and 41 taps in the no-ice and iced configurations,
respectively. Including the 21 taps on the wing
tip section, the model has a total of 261 taps in
the no-ice configuration and 268 taps in the iced
configuration. Pressure measurements were
made using 6 Scanivalves.

A three-component sidewall balance was
designed and constructed for the 3-D experiment.
The balance is used to determine model lift, drag
and pitching moment by measuring the normal,
axial and moment. The balance is mounted
outside the tunnel with the model spar passing
through the tunnel wall and down the center of
the balance. A 0.1 inch gap was left between the
model and the sidewall to avoid any balance
interference. Doubling the gap had no
measurable effect on the model measured loads.
Balance calibration resulted in linear primary
coefficients and balance interactions.

Flow visualization was performed on the
models using fluoescent oil. The oil is placed on
the models and the tunnel is run until the flow
pattern is established. The oil is illuminated with
ultraviolet light and photographed with a 35mm
camera. The flow visualization was performed at
a chord Reynolds number of 1.2 million.

Data acquisi_tionand reduction was performed
at UIUC using an AT&T 6386WGS PC and the
ASYST version 3.1 software written by ASYST
Technologies Software Inc. A Data Translation
model DT2821-F16SE A to D board ( 12 bit, 16
channel and 140kHz) was used to acquire the
data. The sensors were excited, and the outputs
filtered and gained as needed by eight
Measurement Group model 2200 signal
conditioners.

The pressure data, both model surface
pressures and facility transducers, were acquired
and reduced in the usual fashion and a detailed
discussion will nc)t be presented here_ Pr_ure
data were taken at a nominal Reynolds number of
1.5 million. Model pressures were converted to
pressure coefficients using the tunnel dynamic
pressure measured on each of the Scaniyalves.
Note that when span loads are shown, Y istaken
parallel to the leading edge and C_is taken along
the tap lines perpendicular to the leading edge.
Balance data were acquired using 300 samples
per chahnel at 200 Hz and averaged to get one
data point. The balance and model gravity tares
are taken and subtracted from the data. Wall
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correctionsaremadeto thedatabasedon the
methodof Raeand Pope12. Thesedatawere
takenata chordReynoldsnumberof1.2million.

III. RESULTSANDDISCUSSION

2-D Result_

Two-dimensional experimental results on an
airfoil with a simulated ice accretion have been
taken by Bragget. al.13. The results shown are
with and without the simulated glaze ice accretion
shown in Fig. 1. Glaze ice accretions are
characterized by the "horns" which arethe spoiler
like protrusions that are formed. These horns
cause significant alteration of the airfoil flow field
through the formation of separation bubbles.
Here some information on these bubbles is
presented as an introduction for the 3-D data. A
more detailed discussion of the 2-D ice-induced
separation bubbles can be found in ref. 13.

Figure 3 shows the split hot-film measured
velocity profiles in the upper and lower surface
separation bubbles at an angle of attack of 4
degrees. First, consider the upper surface
measurements. The first profile is taken at x/c =
-0.02, just behind the ice horn. The flow is
separated here with a very thin region of reverse
and shear flow. The reverse flow region grows
rapidly as we move downstream to x/c = 0.02.
Note that the reverse flow is very slow, rarely
exceeding 20 ft/sec or about 15 percent of the
free-stream velocity. As the flow moves
downstream the shear layer thickens and the
amount of reverse flow decreases until the
boundary layer reattaches around x/c = 0.16.
Immediately downstream a distorted turbulent
boundary layer is seen. Flow in the lower surface
bubble is similar with reattachment of the bubble
occurring between x/c = 0.12 and 0.14. Similar
trends are also seen at 0 and 2 degrees angle of
attack.

In Fig. 4 the measured pressure distribution
about a NACA 0012 airfoil, with and without the
simulated ice accretion of Fig. 1, is shown. The
clean airfoil shows the well known pressure
distribution about a NACA 0012 airfoil. Looking
on the upper surface of the iced airfoil, a region
of almost constant pressure is seen extending
from the leading edge to x/c = 0.08. This
indicates that a leading-edge separation bubble is
present. These bubbles, although quite large, act
tike classical airfoil laminar separation bubbles 13'
14. The bubble and shear layer are initially laminar
with shear layer transition occurring in the region

where the constant pressure ends. The turbulent
mixing In the shear layer leads to reattachment
downstream after some degree of pressure
recovery. In this case reattachment occurs at x/c
= 0.1613. A separation bubble is also seen in the
pressure distribution on the lower surface. It's
behavior is similar to the upper surface bubble.
Note that comparing the pressure distribution to
the profiles of Fig. 3, the largest reverse flow
velocity occurs at x/c = 0.08, the end of the
constant pressure plateau. This compares
qualitatively to the classic model of a
reattachment vortex in a laminar separation
bubble.

Figure 5 shows the bubble size and shape as
indicated by the separation streamlines for the
upper and lower surface bubbles calculated from
the mean velocity measurements. At (_ = 0
degrees both upper and lower surface bubbles
are quite large. As the angle of attack increases,
the upper surface bubble grows slowly from 0 to
2 degrees and more rapidly from 2 to 4 degrees.
Between 4 and 6 degrees the bubble grows
rapidly and the bubble becomes unsteady. The
bubble fails to reattach at angles much above 6
degrees. The lower surface bubble decreases
rapidly in size at first as a is increased, but
changes little in length between 2 and 4 degrees
angle of attack. The location of maximum bubble
thickness measured normal to the surface occurs
at the transition location for bubbles on smooth
airfoils TM. However, here due to the surface

geometry, this does not correlate to the transition
locations indicated by the surface pressures.

Measured boundary-layer momentum
thickness for the upper surface taken from the
split hot-film data13 are shown in Fig. 6. The
momentum thickness grows rapidly from the
separation point at a rate relatively independent of
angle of attack. For angles of attack of 0, 2 and
4 degrees a maximum value is reached in the
bubble. This maximum value moves downstream

with angle of attack, x/c = .02, .04 and .08
respectively, and the maximum value increases
with angle of attack. A local minlma is reached
further downstream in the vicinity of, but slightly
ahead of the reattachment point. The values are
x/c = .06, .08 and .14, for the angles of attack of
0, 2 and 4 degrees, respectively. Downstream of
the bubble reattachment, the momentum
thickness rises slightly, falls again, then grows
steadily over the region x/c = 0.3 to the trailing
edge. At 6 degrees angle of attack the character
of the curve has changed. Here reattachment is
shown by a leveling off of the momentum
thickness and a slight decrease around x/c = .35.
The momentum thickness rises rapidly thereafter.
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Thissimulatedicedairfoilreachesmaximumliftat
7 degrees angle of attack and the bubble is
completely burst at 8 degrees angle of attack. At
6 degrees the separated flow is observed to be
very unsteady and the bubble large and
approaching a bursting condition.

Briley and McDonald is show calculated
momentum thickness values in a laminar

separation bubble on a NACA 663-018 airfoil. Their
results show a slight reduction in momentum
thickness after shear layer transition, and a rapid
rise occurring Just before reattachment. These
trends compare well to the data presented here.
In fact, as shown in reference 13, the
measurements made in the separation bubble aft
of the ice horn compare qualitatively to a classic
laminar separation bubble of the long bubble
type.

3-D Results

A sketch of the 3D model in the swept and
straight configurations is shown in Fig. 2. Initial
tests with the 3-D model were carried out in the
straight-wing configuration. These tests were
conducted primarily to generate data to compare
to the 2-D data already available 13. More recent
measurements, which have been used for
comparison to the Navier-Stokes computations of
Kwon and Sankar, have utilized the 3-D model in
both the swept and straight configurations.

Figure 7 shows flow visualization results on
the straight wing at c_ = 4 and 8°. At 4 degrees
the oil flow reveals a very 2-D flow. The only 3-D
character is a small interaction seen with the wing
tip vortex. Although d_'fficult to see in these
reproductions, an ice-induced separation bubble
exists at the leading edge. It reattaches around
15 percent chord. In the 8 degree case the
bubble reattachment can be seen to vary greatly
in the spanwise direction. The maximum extent
of the bubble is over fifty percent chord, about
1/3 of the semispan inboard. Due to the 3-D
induced flow, the effective angle of attack reduces
as the wing tip is approached, and the bubble
reattachment moves forward. Near the root, the
bubble also reduces in length. This is due to a
sidewall separation which forces early
reattachment of the bubble _1'16.

tracked over the wing. The _, = 4° flow
visualization clearly shows the formation of a
leading edge vortex. This vortex forms in the
separation bubble aft of the upper surface ice
horn. The vortex grows in diameter as it moves
out from the root to the tip. Spanwise velocities
in the vortex are seen to be quite large9. Also
note that significant spanwise flow is seen aft of
the leading-edge vortex, particularly near the tip.

The CFD particle-trace flow visualization
shows a complex flow field for the iced swept
wing at e = 8°. The leading edge separation
bubble seen at 4 degrees has now enlarged
significantly. The particles tracked in the
separation bubble are shown to heavily interact
with the particles tracked on the wing further
downstream. This is partly due to the stall
characteristics of a swept wing. A swept "wing
tends to stall at the wing tip first. The CFD flow
visualization shows a massively separated flow
region on the swept wing starting near the wing
tip and extending into the midspan region of the
wing, engulfing the separation bubble region.

In Fig. 9, experimental and computational
surface flow visualization results are shown. The
computational results are from simulated oil flow
generated by tracing the trajectories of massless
particles introduced into the Navier-Stokes flow
field. The experiment was conducted at a chord
reynolds number of 1.2 million while the
computation was carried out at 1.5 million. Here,
the leading edge vortex grows in size as it moves
from the root to the tip. In the computational
result, the reattachment line moves back to about
80 percent chord near the tip. Ahead of this line
the vortex-induced surface flow is forward into the
free stream and towards the tip as before. A
similar result is seen in the experimental data.
Near the tip the flow is essentially parallel to the
trailing edge behind the reattachment line. The
interaction of the large leading-edge vortex and
the tip vortex causes an interesting flow at the tip.
The flow moves forward toward the leading edge
then turns back towards the trailing edge, all the
time flowing outboard. Near the trailing edge this
motion is more pronounced in the experimental
data. The experimental data shows a somewhat
different flow at the tip in the midchord to leading-
edge region. This Is probably due to the simpler
leading-edge geometry used in the CFD model.

The presence of spanwise flow on the wing is
greatly affected by the wing sweep. This result
can be seen in CFD flow visualization 17 shown in

Fig. &ill=or the CFD flow visualization, the
location of several massless air-stream particles is

Span loads for both the iced and no-iced
configurations of the 3-D straight wing are shown
in Fig. 10. These data were obtained by
integrating the pressure data to obtain sectional
lift coefficients. At 0 and 2 degrees angle of



attackthetwospanloadsareamazinglysimilar.
Thisindicates,ascanalsobeseeninthe3-Dlift,
thatthezero-liftangleandlift-curveslopesarenot
affectedby thesimulatedice. It iswellknown
thata straightrectangularwingstallsfirstatthe
root. Thisis clearlyseenin the icedspanload
dataasthe sectionallift valueson theinboard
wingfall belowthoseof thecleanmodelasthe
angleof attackisincreased.Thisoccursdueto
theburstingoftheice-inducedseparationbubble
neartherootwheretheeffectiveangleof attack
ishigh.

Thespanwisewing loading for the swept wing
is shown in Fig. 11 for positive angles of attack
form 0 to 8 degrees. As expected, the presence
of the ice shape has caused a reduction in wing
loading, especially on the outboard sections
where stall occurs first on a swept wing. Contrast
this to the straight wing in Fig. 10 where the root
stalls first.

As a part of the experimental icing research,
the effect of roughness was studied on the
aerodynamic performance of the straight wing in
the iced and un-iced configurations. Two types of
roughness were examined on the straight wing:
isotropic and three-dimensional roughness. The
isotropic roughness was a 50-grit sandpaper
roughness with k\c = 0.0010. The 3-D roughness
were 0.25 x 0.25 inch squares, 0.054 inch high,
placed offset 0.5 inches apart in rows. In Fig. 12,
the section lift performance of the smooth ice
shape is compared with the section lift
performance of the iced wing when isotropic and
3-D roughness is added. The results indicate that
in the linear region, c_ = -6 to 6 deg., neither the
isotropic nor the 3-D roughness significantly affect
the lift performance of the wing. In the non-linear
region, the isotropic roughness has little effect on
the positive stall angle, with a small reduction in
maximum lift. At negative angles of attack, an
earlier stall onset is seen with a reduction in lift
due to the roughness.

The effect of the 3-D roughness on the
section performance of the model seems to be
somewhat different in the stall regime. Here, a
distinct stall angle can not be detected in either
the positive or the negative range of angles of
attack. Rather, at the angle where the wing
section stalls in the smooth-ice case, the lift-curve
slope changes but the lift continues to increase.

This phenomena could be attributed to the
size of the three-dimensional roughness used.
The 3-D roughness is three times larger than the
particles which form the isotropic roughness. The

result of the particles' action is similar to the
results of vortex generators. The effect of the
roughness becomes particularly evident near the
stall regime. In this regime, the flow seems to
remain attached somewhat longer, therefore
producing a potentially softer stall at both positive
and negative angles of attack. Neither of these
two types of roughness may-c-oi'rectlymodel the
actual 3-D, and highly irregular roughness found
on actual ice accretions. More research on
surface roughness effects is needed.

The lift performance of the straight wing,
measured with a three component balance, is
shown in Fig. 13. Comparison between the clean
wing, the clean wing with roughness, and the iced
wing with rough leading edge reveal no
appreciable change in the lift curve slope of the
wing. The angle of stall, however, is shown to be
directly affected by the presence of roughness.
The straight wing stalls at c_ = 17° in the clean
configuration. With the addition of roughness, the
stall angle is reduced to 13_. The presence of
leading edge ice in addition to roughness further
reduces the stall angle to 10° . In addition to the
stall angle, roughness is shown to affect the post
stall performance of the straight wing.

IV. SUMMARY

The glaze ice accretion studied in this paper
had a severe effect on the aerodynamics of the
NACA 0012 airfoil. The 2-D data clearly showed
the laminar separation bubble Which is a
dominant feature of the iced airfoil flow field. The
bubble causes a large drag increase and early
airfoil stall when the bubble bursts and fails to
reattach. The bubble has the characteristics of a
classic long bubble type airfoil laminar separation
bubble. A straight aspect ratio five wing was
tested with the same simulated ice accretion.
Flow visualization results showed a faidy 2-D flow
on this unswept wing. Significant sidewall
boundary-layer interaction was seen in the flow
visualization as well. The wall boundary layer in
the tunnel affected the results by delaying the root
stall. When this was modelled properly in the
CFD code the results for span load compared
favorably.

The swept wing was seen to have a very
three-dimensional flow field. At low angle of
attack, flow visualization shows a strong leading
edge vortex formed in the separated flow aft of
the upper surface ice horn. Spanwise flow in the
vortex is significant. As the angle of attack is



increased,thevortexgrows, especially near the
tip, and a very three-dimensional flow develops.
Since the swept wing stalls first at the tip, the wall
boundary layer has little effect on these results.
Comparison of the experimental results to the
computations are good.

Surface roughness effectswere presented on
the unswept wing. Both sandgrain roughness and
isolated 3-D roughness elements were placed on
the simulated ice accretion. The effects were
exactly the opposite with the 3-D roughness
actually increasing the maximum lift of the iced,
unswept wing. Much more research is needed on
roughness effects on iced airfoils and its effect on
the leading- edge separation which is so critical to
the iced airfoil performance. Roughness models
more complex than simple sandgrain roughness
wilt have to be developed to properly reproduce
actual lce roughness effects.

Future research will include laser Doppler
velocimeter data for a more detailed look at these
3-D flow fields. This will provide a more complete
picture of the 3-D separation bubbles. Research
on roughness effects and its proper modelling are
also underway to improve our understanding of
this complex flow.
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Numerical Modeling of Runback Water on Ice

Aircraft Surfaces
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A numerical simulation for "running wet" aircraft anti-icing systems is developed. The model
includes breakup of the water film, which exists in regions of direct impingement, into individual
rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration
on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multi-
layer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical
heating elements embedded within the layers. Details of the calculation procedure and the methods used
are presenmd.
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= specific heat
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= thermal conductivity r/ =
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= static pressure
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= rate of heat transfer

= rate of heat transfer per unit area

= rate of heat generation per unit volume
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= Schmidt number

= flowfield velocity
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S_erscripts

l = layer number in the composite wall

n = zlz step level (grid number in the z-direction)

I. Introduction

The problem of aircraft icing has been the focus of
study of many researchers for a number years. The
detrimental effects of ice accretion on critical surfaces can
jeopardize flight safety as well as the overall aircraft
performance. Consequently, accurate modeling and
extensive study of the icing process are necessary. Two
general methods of ice protection have been developed: De-
icing methods for the intermittent removal of ice buildup
by destroying the bond between the ice and the surface, and
anti-icing methods for the prevention of ice formation on
critical surfaces such as engine nacelles.

The availability of high-speed digital computers has
favored the use of numerical techniques and the
development of computer codes to design and analyze ice
protection systems. It is felt that the latter can minimize

the cost associated with the required experimental testing
by providing a tool that is at least capable of predicting
preliminary results.

Most studies related to aircraft icing have been
committed to the prediction of ice shapes and the
determination of their detrimental effects on aerodynamic
performance of the aircraft components. At this time,
research in running wet anti-icing systems is quite basic,
and runback is treated in a primitive manner. The NASA
Lewis Research Center has been a major contributor in
conducting and sponsoring studies related to computer
modeling of aircraft icing processes as well as
experimental testing in its Icing Research Tunnel (IRT).
As a result, LEWICE [1], an ice accretion prediction code,
was developed for unprotected airfoil surfaces. The
approach used in the modeling consists of performing
mass and energy balances on the surface water. The
wetness factor issue is ignored and the runback water is
assumed to wet the entire surface at a particular location.
Consequently, the amount of required heat to anti-ice the
surface is under-estimated.

Several investigators have produced different versions
of the LEWICE code in order to improve it. To name a
few, Cebeci eL al [2] modified the flowfield calculation

module of the code to avoid the problem of multiple
stagnation points. Yamaguchi et. al [3] proposed a multi-
zone roughness model: a zone of uniform water film in the
stagnation region, a rough zone of stationary water beads,
and lastly, a zone where surface water run back as

rivulets [4]. The runback water was recently modeled by
AI-Khalil et. al [5,6,7] by incorporating a rivulet model.
This paper is intended to present the numerical calculation
procedures used including the most recent improvements
of the latter model.

ll. Mathematical Model

The runback model introduced earlier is based on a
two-dimensional mathematical formulation. The surface

water and the solid structure tern['_'_;_:;'_resvary across their

thicknesses and in the flow direction along a streamline on
the surface. Spanwise temperature dependence is assumed
to be negligible. However, the latter is accounted for by
performing energy balances on control volumes whose
spanwise widths extend between two adjacent streamlines
on the aircraft surface.

I1.1 Runback Water

II. 1.1 H_'drodvrtamics:

The rate of water impingement on aircraft surfaces,
due to the existence of undisturbed supercooled liquid water
droplets in clouds, is relatively small. This and
aerodynamic forces result in a very shallow water film
flowing over the skin surface. Consequently, the surface
water behavior is controlled not only by aerodynamic and
body forces, but also by surface tension forces and surface
roughness. . _.........

In the direct impingement regions, i.e., in the
neighborhood 0Fthe stagnation point, the water tends to
wet the entire surface due to incoming droplets and due to
water running back from upstream locations. However, at
or downstream of the impingement limit, the liquid film
could become unstable due to surface tension forces that
cause the surface water to coalesce into individual streams,
referred to as rivulets, separated by dry areas.

A detailed study on the hydrodynamics and a stability
analysis of surface water was presented in Ref. [5]. For
completeness, some of the essential features are presented
here without further discussion. The film/rivulet flow in
the streamwise (z) directiofi is caused by a shear force
acting at the liquid-air interface. The latter force is
obtained from the results of the skin friction factor
computed from viscous aerodynamic calculations of the
flowfield.

A rectangular film model was chosen to
mathematically represent the heat transfer process in a
rivulet as shown in Fig 1 This model was found
appropriate to the current problem for various reasons
discussed in Ref. [6]. The criteria used for the new
runback water configuration are as follows:

• The wetness factor is preserved, i.e., the widths of a

rectangular film is equal to that of its corresponding
rivulet.

• The law of mass conservation requires equal mass flow
rates in a rivulet and its equivalent rectangular film.
This criterion enables one to compute the fdm thickness

• Mass loss due to evaporation is associated with a
decrease in the rivulet size, i.e., its radius and,
consequently, its base width that is also equal to the
rectangular film width. This criterion enables one to
updme the value of the wetness factor.

The velocity distributions within the film and the
rivulet were derived and used to obtain the mass flow rates
in each [5], as shown, respectively:

m/'= P_ F _ (_2 (I)
2_



p': Fl([3) R3
rn, = # (2)

The second criterion is used, equating the above equations.
to give:

= R ,, _ (3)
¥ sinfl

where Ft(fl) is a function of/3 derived in [7]. The above
equation shows the rectangular film thickness is directly
pro_rtional_m its equivalent rivulet radius. This eq_fion

will later be used to update _ when R is reduced due to
evaporation. Procedures to determine the conditions and
location for the breakup of the liquid layer flowing
downstream of impingement regions were thoroughly
discussed in Ref. [5]. The prediction of initial values of
Rand F at breakup was also described.

II. 1.2 Tllermal An#vsis:

The principal objective of this study has been to
analyze and predict the performance of anti-icing systems.
In such applications, the worse case occurs at equilibrium
state conditions. Consequently, the mathematical
formulation of the heat transfer process is based on the
steady-state energy equations. The unsteady equations are
more relevant to de-icing applications. The runback water
energy equation then follows:

OTw OZTw
_=Y-- (4)
Oz Oy2

where, .y- a_
w(y)

The above equation is based on the fact that
conduction heat transfer within the liquid water in the z-
direction (flow direction) is negligible compared to that in
the y-direction (across film thickness). The solution of
Eq. (4) requires two boundary conditions in the y-
direction, one at the solid-liquid interface, and one at the
liquid-air interface, and an initial condition (z=0). The
latter condition requires knowledge of the water
temperature at the stagnation point. Analytically, this is
impossible because that depends on the final temperature
solution in the water film and in the solid structure layers.
However, this may be obtained numerically in an iterative
procedure described in a later section.

The boundary condition at the liquid-air interface is
written as:

- kw OTw = h. _ [Tw -T_ r V_-_p21

- rn,",,pC,... (T. - Tw) m'._, V2.
2 (5)

where the first and second term terms on the right-hand
side represent heat loss to the ambient by convection and
evaporation, respectively; and the third and fourth terms
are the sensible and kinetic heat contributions of the

impinging droplets which are of value only in the direct
impingement region.

The rate of impingement per unit area, m"imp, is
calculated from the local value of the collection efficiency
as shown:

m"i,,q, = rl LWC V. (6)

and the rate of evaporation per unit area is computed using
the Chihon-Colburn heat-mass transfer analogy. This
may be expressed as:

m"_ap Cp. _ Sc lair Mair E -_ Pv,w (7)

where,

Pv,w =

evap =

saturated vapor pressure at the local runback water
temperature Tw.

local vapor pressure at the edge of the boundary
layer at the local relative humidity.

Application of Dalton's Law of partial pressures and
knowledge of ambient conditions yields:

e,,p = P, P'," ¢. (8)
P,

where the relative humidity q_**in a cloud is generally
taken to be 100%. The saturation vapor pressure of water
is written as function of temperature:

P,(T) =2337 exp {6789 L293.Fl 15 1] -5'031 In [_--_15]}. (9)

where the units of Pv and T are if'a) ant (K), respectively.

The recovery factor r in Eq. (5) accounts for viscous
dissipation in the boundary layer and is approximated
by [8]:

l laminar flowr=l-v_.(1-Pr_r ),_ n= 2 (10)
l turbulent flow
3

The properties at the edge of the boundary layer, i.e., Pe,
Te, and Ve are computed using the perfect gas relations for
isentropic flow and the local values of the pressure
coefficient obtained from a flowfield solver.

Note that _, in Eq. (5), is an area correction factor to
account for the area differences in the rivulet and the
rectangular film models through which heat exchange with
the ambient occurs. This factor is defined as the ratio of
the rivulet free surface area to the upper surface area of the
corresponding rectangular film. From geometric
considerations, the following may be written:

=_ (o<p<l) t
sin_

(11)
= 1 (F = 1) /

#

!
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This factor is less than 10% for contact angles smaller
than 42 ° , and is unity for uniform film flow.

The boundary conditions concerning the solid-liquid
interface which represents the heat exchange between the
solid wall and the runback water remains to be discussed.

These two conditions will be presented with the energy
equation of the wall structure since they are common
between the two regions.

11.2 Anti-ice Bleed Air:

A widely used method of preventing ice formation is
the hot air type due to its high reliability. In these
systems, hot air is drawn from an intermediate or high
stage compressor bleed port and ducted through passages to
the leading edges of wings, empennages, engine nacelles
or other critical areas. Due to the complexity of the flow
of the anti-icing air inside the irregular duct shapes and the
uniqueness of each design, a generalized model requires the
following assumptions:

I. The heating requirement by such a system is generally
specified by the amount of hot air supply, ma, and its

delivery temperature at the stagnation region.

2. The internal heat transfer coefficients hi, between the
air and the inside surface of the structure, is assumed to

be known from previous experience or from
experimental testing on the particular system in
consideration.

3. The hot air temperature varies in the flow direction and
is assumed to be lumped in the transverse direction.

With regards to the above assumptions, the energy
equation of the anti-ice air may be written as:

m. c,,. aTo = h,(z)[To(z)- T..(y=O,z)] (12)
dz

Obviously, Ta(z) depends on the solid wall temperature

distribution which also depends on the runback water
solutions. Therefore, the energy equations of those three
regions must be solved simultaneously.

11.3 Wall Structure:

Based on the assumption that the wall temperature is

dependent on the y and z-direction [6], the following
energy equation may be written for each layer in the
composite structure:

1 O _,(z) aT" +-- ___0 (13)
Z(z) o3z o3y2 k.,

where A.(z) may be taken as the distance between two

adjacent surface streamlines which make up the strip being
analyzed. This distance is constant for a 2-dimensional
flow over a surface. The above formulation allows one to

model a heating element as one of the layers. If anti-icing
is achieved by means of a hot air system alone, the value
of q° may be conveniently set to zero for all the layers.

The boundary condition at the inner surface of the wall
may be written for the innermost layer as:

- k,. o'T., = q_ + hi (To - T,.) (14)
9y

where q"ai is an optional prescribed heat flux distribution.

This value and hi may be set to zero for a perfectly

insulated inner surface. The above equations were
formulated as such to give the flexibility of modeling
different systems.

The two conditions that must be satisfied at each

solid-solid interface between the wall layers are continuity
of temperature and heat flux normal to the interface. As to

the boundary conditions on the left side (stagnation point)
and the right side of the wall, they may be extrapolated
from the solutions using insulated conditions, or they may
be specified if the temperature distribution is known at
either end.

The last boundary conditions that remain are those

pertaining to the outermost layer at the solid-liquid
(partially or fully wetted surface) _d solid-air (dry surface)
interfaces. They may be written as follows:

T,,, = T,, (0"SF<I) (15)

and,

q',_=-k_F o3T" +h-(1-F)(T_r--Te-- rV] ) ((_F<i) (16)
o3Y 2 Cv,,

The first condition is only necessary in the fully or
partially wetted regions. The second condition simply
states that heat, q"m, is transferred from the wall

proportionally through the wetted (to the water) and the

dry (to the ambient) surface areas as defined by the wemess
factor F. Note that Tin, in Eq. (16), may be replaced with
Tw according to Eq. (15).

III. Numerical Solution Techniques

II1.1 RunbaCk Water:

A fully implicit method was used to numerically
solve Eq. (5) because of the positive stability
properties [9]. Backwards differencing in the z-direction,
and central differencing in the y-direction were employed.
Applying this scheme to Eq_(5_and rearranging terms
yields:

- -LTy j J [2 y2j (17)
for j=2,3 .... ,M-I, where M is the total number of grid
points across the film thickness (in the y-direction), and n
is the grid number in the flow direction (z). Equation (17)

is written for each corresponding node which results in a
set of linear equations. The latter may be rewritten in a
matrix form and solved using the Thomas Algorithm for
tridiagonal system of equations.

However, before carrying the solution, two equations,
corresponding to j=l (solid liquid boundary) and j=M
(liquid-air boundary), are still required. A one-sided
difference representation of Eqs. (16) and (5) is used for



this purpose, respectively. Equation (15) could have been
used in the runback solution while Eq. (16) is used in the
wall solution, instead. However, that procedure was found
to be highly unstable. Thus:

[I+h'(1-F)AY]Tf_ Tj+_=
F kw J

d_._... [q,_+ h,. (l-F)(T,- r V'2 )] (18)
F kw 2 Cn,_,J

where j=l, and q"m is the rate of heat flux normal to the
solid-liquid interface computed from the temperature
distribution in the wall from the following:

q_,= - k,. _T,. ( at solid-liquid interface ) (19)
by

A second order t-mitedifferencing was used to compute
the right-hand side of Eq. (19). Atj=M, one may write,
after rearranging terms:

- Tfl_' + [I + AY (h" _ +m_'_"CP" )] Tfl+_=k.

The above equations may now be solved for the

temperatures at nodes j--1 through M at location z+Az
(i.e., n+l), knowing the nodal temperatures at location z

(i.e., n). The evaporation term m"evap is computed using
the temperature at z in order to preserve the linearity of the
system of equations.

The procedure described above requires knowledge of
the water temperature at the stagnation point (z=0, or
n=l). This is obtained by extrapolation from the
temperature distributions at n=2 and n=3. Since the
solution procedure is iterative, as discussed later, an initial
guess is required to start the computations. This is
achieved by performing mass and energy balances on a
differential control volume of the surface water at the

stagnation point, which yields the following approximate
expression:

T_ 1 (initial) = rai_ (Cp.. T.+ ) - m_,L. + q_,

+ h-(T,+ r V-----_2_)] / (mi',._,Cp.,+ h.. ) (21)
2C_, J

where q"m is estimated assuming that heat conduction
within the solid structure occurs in the outward direction
(y). Equation (21) is only used at the first iteration. In
subsequent iterations, the extrapolation technique
mentioned previously may be used. However, this caused
slight fluctuations in the temperature distribution at the
first few nodes (n= 1,2,3,4). The problem was remedied by
setting the initial water temperature equal to the average
temperatures of nodes n=2 and 3 without affecting the
remaining results.

In addition to an initial temperature, an initial water
film thickness is required. A mass balance may be

performed on a control volume of length Azl (distance

between node n= 1 and n=2), thickness (y, and a unit depth.

Using Eq. (1) with 2=1 and F=I, this yields:

2#

Solving for (y, gives:

@,,-l(initial) ./2 _ Azl t,,," m,;,,_,) (22)
= .V -TT- -

where r is taken as the average wall shear force between
nodes n= I and n=2.

The conservation of mass equation of the runback
water may be readily obtained and shown to be:

m ,.1 = m" + _,_.1zlz (mi_-mi_,_, _ ) (23)

Knowing the mass flow rate, the film thickness in the
fully or partially wetted regions may be derived from
Eqs. (1), (2) and (3):

/_'_1= ,a/2/'/ m"*l (F=I) (24)V p'rX

Ip _ gl(13)J V sin (fJ)

where mr is the mass flow rate per rivulet. In the case
where the runback water is flowing as rivulets (F<I), the
wetness factor must be updated at each z-location. From
geometric considerations, this is derived from

F=(2Rsinfl)/X where R is obtained from Eq. (3).
However, if surface streamlines are not parallel (3-D flow),
great care must be taken when evaluating 3. to account for
variations in the distance between two surface streamlines

which identify the slrip being analyzed.

The numerical solution of Eqs. (17), (18) and (20)
requires the discretization of the water domain into grid
points. Across the liquid layer thickness, equal spacing
between the grid points was used. Along the flow
direction, two zones were selected: direct impingement
region, and downstream region. The grid spacing is
constant in each zone, but is much smaller in the direct
impingement region to accommodate for the rapidly
changing variables due to the impinging water droplets and
the flowfield characteristics.

The current model was specifically developed for anti-
icing applications where at least the minimum heat
required to keep the surface water from freezing is supplied
to the surface. This is because a two-dimensional phase-
change model was found to be inappropriate since freezing
will normally start at the liquid-air interface, which creams
a problem in modeling the flow characteristics of the
unfrozen water. However, since the temperature drop
across the film thickness is small, the temperature may be
assumed to be uniform across the layer. Therefore, when a
freezing temperature, or lower, is obtained during the
calculation process, an alternate method is used. This



consistsof performing a macroscopic energy balance on
the surface water to obtain the freezing fraction, such as
done in the LEWICE code [1]. Nevertheless, the rivulet
configuration and its prediction remain the same. This
enables one to predict the amount and location of ice
accumulation during a specified period of exposure time.

111.2 Anti-lee Bleed Air:

The governing energy equation of the anti-ice bleed
air, Eq. (12), is a first order ordinary differential equation
(ODE). Due to the arbitrary distribution of the heat
transfer coefficient and the wall temperature at the inside
surface of the solid structure, a numerical technique must
be used to solve the latter equation.

A forward finite difference scheme is only first order
accurate. A more accurate and widely used technique for
solving ODE's, is the fourth order Runge-Kutta
method [10]. Knowing the temperature distribution in the
wall, from the most recent iteration, the latter method is
used to predict or update the hot air temperature
distribution in the cowl. The result is subsequently used
in the wall temperature solution at the next iteration.

In cases where anti-icing is achieved by means other
than the hot air type (i.e., ma=0), the solution of Eq. (12)
using the aforementioned technique should be avoided.
Instead, the air in the cowl is considered to be stagnant and
at a prescribed temperature. Also, when the internal heat
transfer coefficient is zero (i.e., insulated inner surfaces),
there is no need to solve Eq. (12) since the result is a
constant air temperature which does not affect the wall
temperature, and consequently the runback water
temperature.

111.3 Wall Structure:

A solution for the different layers in the wall structure
may be obtained by direct approximation of the governing
equation, Eq. (13), and the corresponding boundary
conditions by finite differences. However, the control
volume approach was chosen due to its accurate
conservation properties [7]. Difference equations are
derived by performing an energy balance on each control
volume corresponding to a particular node. The control
surfaces of each control volume are half way between the
corresponding node and its adjacent surrounding nodes.
There exist eleven types of nodes in the wall structure.
These types are listed below and correspondingly numbered
as shown in Fig 2. which illustrates a two-layer wall
(note that the wall thickness dimension compared with its
length is exaggerated for clarity):

1. Totally internal node.

2. Inner surface side node.

3. Inner surface left-corner node.

4. Inner surface right-corner node.

5. Left-side internal node.

6. Right-side internal node.

7. Solid-solid interface internal node.

8. Solid-solid interface left-side node.

9. Solid-solid interface right-side node.

10. Outer totally/partially wetted surface node.

I1. Outer totally dry surface node.

Energy balance equations for all node types are derived
and presented below. The following definitions were used:

fl--_, rl=-_, el= _z , and Ol=_-_
Ay ki Ayt ayt (26)

where i and l+ 1 indicate the layer numbers corresponding
to a particular solid-solid interface. Note that in the
following, node (i#') denotes the grid point at row "i" and
column "j", and that Airepresents the distance between the

two surface streamlines, defining the width of the wall
stripbeing analyzed, at column 'T':

Node tyoe 1:

f12T/./_1+ I1 X' - )'/-'.] T/_I,/2_.i J

.
- 2 (,82+1) ti - Ai-l+ Ai_- Xi] Ti.i

2;tl 2_i J

2Ai J k

2(fl2+1) _/-A/q I-Ai+I-Ai+ 2Az2hi]Tij

[1 )'i-_/-I 1 [1 &i*l2 _ii -j T__,j- + _-i_'] Ti+l,i- 2 fl2 Tii÷l
.

= zlz 2 [-2- ( hl r. + q,,i l + q °]k Lay (28)

Node type_3:

If the temperature distribution is not specified at z=0,
an insulated boundary condition is used:

[1 + f12+ .,q.i+l- _.i t- Az2 hi] Ti,i - [ l + ._.i._- _i]., Ti+,,i2ai --i-_-yJ 7L ]

- f12 TiJ+' = A-_ [! ( h/T. + ,_ ) + 2_] (29)k LAy

Node type_4:

Similarly, for unspecified temperature:

2).i kAyj 2;I., J

Node type 5:

For unspecified temperature:
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I Ai÷l- Ai] Tij- f ru-_ + 2 q32+1) + -Z]

-[2 + Ai+!-RilTi.li-32Tii+t=AZ2q_),i J k
(31)

Node woe 6:

For unspecified temperature:

-32 Ti,/_l- [2 _' --;tiq] Ti_,,/2_ J

Zi J k
(32)

Node woe 7;

l+_¢t .f2t - +

] + 2;t, J r2_

AZ 2 I" _o

2 _ t.q _+ -Oaq°ul] (33)

Node tvoe 8:

For unspecified temperature:

&i*l-_.i I Ti+Ij + et2 _---_LTi,/.l=+ (1 + _,.0,) 1 + 2_ii"J .Or

- _ [q°, + _, q%,] (34)
2/ct

Node tv_ 9;

;ti- Ai-l]e? rij-1 + (1 + _'_.Qt) 1 _'_ ] Ti-li

+ et2 X'---LT,;.1 = - _z2 [q°t + .Or qOu,]
£2t 2 kt (353

Node type 10:

In this region, the node temperature is set equal to the
local liquid temperature at the base of the film. This is

achieved using a cubic spline interpolation technique
because the interfacial grid points of the water and the
solid do not coincide.

Node type_11:

For consistency with the lower boundary of the liquid
layer, a direct differencing of the equation representing
convective heat loss to the ambient is applied. This
yields:

- Ti.u-i + (1 +/7. Ay ) TiM - h. I". Ay
k k (36)

7_.-

111.4 Solution Procedure:

The required solutions are the temperature
distributions in the anti-ice hot air, the solid structure, and
the runback water. In addition, the surface water mass
flow rate and the film/rivulets configuration must be
determined. A simultaneous solution must be carried in
the three regions: (1) runback water;, (2) solid structure;
and (3) anti-ice bleed air. This may not be accomplished
in a single step due to the dependency of some boundary
conditions of a particular region on the final solution in
the adjacent region. This suggests the use of an iterative
type of numerical solution betweenthe three regions.

The sequence of the steps utilized in the numerical
solution iterative procedure may be listed as follows:

rr

(1) Estimate q m, in Eq. (18), at all nodes corresponding
to the runback water at j= 1. The procedure is to use
a local one-dimensional heat transfer model from the
wall to the free stream air (i.e., no conduction within
the wall in the flow direction), assuming a fully dry
surface. Any heat transfer generated due to electrical
heating elements is assumed to flow outboard to the
ambient. These assumptions were necessary to get
the iterative solution started.

(2) Compute the "initial" water temperature and the film
thickness at the stagnation location from Eqs. (21)
and (22), respectively.

(3) Solve Eqs. (17), (18), and (20) for the runback water
temperature distribution across the film thickness at
the next z-location. Proceed with the solution of the
latter equations by marching to the location of the
impingement limit. This, of course, corresponds to
the direct impingement region where the wetness
factor is unity. Note that the runback water mass
flow rate and the film thickness are updated using
Eqs. (23) and (24), respectively, as the solution is
brought to the next level.

From the impingement limit onward, check if the
criteria for film breakup are met as the march
proceeds downstream with the solution. If breakup
occurs, the wetness factor and the rivulet
configuration are predicted [5]. Then proceed with
the calculations for each step up to the end of the
structure or up to the location where total
evaporation occurs. The film thickness is updated
using Eq. (24) or (25), and the wetness factor is

updated by geometric considerations after each Az

step.

Generally, a larger number of nodes is used in the
runback water than in the wall at the solid-liquid
interface. Thus, a cubic spline interpolation
technique is used to predict the wall nodal
temperatures, for node type 10, from the water nodal
temperatures at the interface.

Setup the equations corresponding to convective
boundary condition, Eq. (36), for nodes of type 11,
if total evaporation occurs upstream of the end of the
Stlalcture.

(6)
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(7) Assume a constant anti-ice bleed air temperature equal
to the delivery temperature at the stagnation region.

(8) Setup the equations corresponding to the rest of the
solid structure nodes, types 1 through 9.

(9) Solve the linear system of equations for the wall
nodal temperatures. This terminates the first
iteration.

(10) Compute q"m from Eq. (19) using the temperature
distribution obtained in the previous step, and
interpolate for the runback nodes using cubic splines.
Under-relaxation of the latter values should be used

to carry a stable solution as follows:

q,,n+l = q,,_ + F (q,,_+1 _ q,,n )

where F is the under-relaxation factor and has a value

between zero and unity. Its actual value depends on
the particular problem under consideration.

(11) Evidendy, the solution would not converge in one
iteration. Extrapolate for the initial water
temperature as previously discussed, and compute the
film thickness at stagnation from Eq. (22).

(12) Repeat the runback water solution as described in
steps (3) and (4).

(13) Set the wall temperature at the solid-liquid interracial
nodes in the wet region by interpolation from the
water solution of step (12). Also setup the
convective boundary condition equations in the dry
region as done in step (6).

Solve for the temperature of the anti-ice bleed air as
described in section III.2, using the most recent wall
temperature distribution at the inner surface.

(15) Setup the equations corresponding to _e remaining
wall nodes as in step (8), then solve the system of
linear equations for the wall nodal temperatures.

(16) Compare the solutions obtained in the previous step
with the corresponding solutions of step (5). If the
difference is within an acceptable tolerance, the
solution is considered converged. Otherwise,
perform another iteration by repeating the last few
steps starting with step (9).

IV. Sample Calculations and Discussion

The primary purpose of this paper was to present the
details of the mathematical development and the numerical
solution techniques of the current model. Therefore, only
one example problem will be considered in order to
demonstrate the calculation procedure. However, several
other cases were considered and presented in Ref. [11].
The complete solution to the problem is resolved in three
major steps: (1) fiowfield calculations, including the
viscous layer near the wall; (2) individual water droplet
trajectory calculations using the velocities calculated in the
previous step; and, finally, (3)the heat transfer
calculations for the anti-ice hot air, the solid structure, and
the surface water.

In the following example, the solid structure is
assumed to be a NACA 0012 airfoil of chord length equal
to 1.0 m, as illustrated in Fig. 3. The wall structure of

(14)

the airfoil is composed of five layers, typical of some
aircraft surfaces. Properties and dimensions of these layers
are illustrated in Table 1. The electrical heater, center
layer, is assumed to be turned off and heating of the
surface is accomplished by spraying hot air on the inside
surface of the cowling near the stagnation region. The air
is delivered at a temperature of 200 °C and a mass flow
rate of 0.1 Kg/sec per unit spanwise distance.

The ambient operating conditions are the following:

• Flight Mach number = 0.25

• Ambient static temperature = -12 °C

• Ambient static pressure = 90.75 kPa

• Angle of attack = 0°

• Cloud Liquid Water Content = 1.0 g/m3

• Relative humidity = 100%

• Mean volume droplet diameter = 20 Inn

The flowfieid around the airfoil was computed using
the ARC2D code which solves the two-dimensional thin
layer Navier-Stokes equation. A hyperbolic grid generator
was used to produce a C-type grid structure around the
airfoil: 239 nodes along the surface and 55 nodes in the
normal direction. Grids were packed near the wall for
accurate prediction of the large gradients induced by
viscous effects in these regions. The resulting pressure
coefficient and friction coefficient distributions are

illustrated in Figs. (4) and (5), respectively. These
coefficients are defined as follows:

P-P.
Ct,=--

ip.V2
2

and, CI:----!---
i#.v 2.
2

The first coefficient may be used to calculate properti__at
the edge of the boundary layer, andthe second is used to
compute the wall shear stress that cause the water to run
back.

A particle trajectory code was then used to produce a
collection efficiency distribution on the surface, as
illustrated in Fig. 6. Note that all the resuits presented
thus far are symmetric between the upper and the lower
surfaces of the airfoil. This is due to the fact that the flow

angle of attack is zero and the airfoil geometry is
symmetric.

The final step involves-_e heat transfer calculations.
The external convective heat transfer coefficients, between
the wall surface and the ambient air, were computed using
a sand roughness factor of ks/c=0.0002 [1]. The internal
heat transfer coefficients, between the hot air and the inner
surface of the airfoil cowl were arbitrarily assumed since
they depend on the particular air jet nozzles design, the rate
of air flow, and the air passages geometry. These
coefficients are shown in Fig. 7.

The procedure described earlier is applied, using the
results thus far obtained_t6 solve for the problem variable
parameters. The contact angle between the rivulets and the
surface, when breakup of the film occurs, is assumed to be



]/=40 °. The actual value of _ depends on the properties of

the solid surface and its roughness.

The resulting average temperature distribution of the

anti-ice air inside the cowl is illustrated in Fig. 8. The air
temperature drop across the entire length of the airfoil is
approximately 85 °C. The drop occurs in a relatively
smoother manner compared to that of the runback water
average temperature, shown in Fig. 9. This is due to the
distribution of the corresponding convective heat transfer

coefficients. Since the solid wall conductivity is relatively
larger than that of water, its average temperature
distribution tends to be smoother as depicted in Fig. 9.

The distribution of the heat flux leaving the outer
surface of the airfoil is plotted in Fig. 10. The curve
peaks are due to the peaks in the distribution of the

external heat transfer coefficients which correspond to a
transition from laminar to turbulent flow. Figures 11 and
12 are plots of the runback water film thickness and the

wetness factor, respectively. The sudden jumps in the
curves correspond to the breakup of the uniform film in
the direct impingement region (F=I) into individual
rivulets (F< 1).

The corresponding distribution of the runback surface
mass flow rate per unit spanwise distance is shown in

Fig. 13. This system is clearly a running wet anti-icing
system. Total evaporation may be better accomplished
with electrical heating elements such that a large amount
of heat is supplied to the direct impingement regions.

V. Concluding Remarks

A numerical simulation for "running wet" aircraft
anti-icing systems was developed. The model includes
breakup of the water film, which exists in regions of direct
impingement, into individual rivulets. The wetness factor

distribution resulting from the film breakup and the rivulet
configuration on the surface were predicted in the
numerical solution. The solid wall was modeled as a

multi-layer structure and the anti-icing system used was of

the thermal type utilizing hot air and/or electrical heating
elements embedded within the layers. The mathematical
formulation of the heat transfer process as well as details
of the numerical solution procedure were presented.

Experimental tests were recently conducted in the
NASA Lewis Icing Research Tunnel to validate the current
model. A detailed comparison with the numerical results

was not possible at the time this manuscript was written
since the data acquired were not reduced. However, similar

trends were observed between the computer code
predictions and the experimental results. Further detailed
comparisons will be carried in the near future.
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Table 1: Composite Wall Physical and
Thermal Pro 3ertles.

Layer
number

1

2

3

4

5

Description Material

Substrate Aluminum
Alio_,

Inner Epoxy/
Insulation Glass

Heater* Copper

Outer Epoxy/
Insulation Glass

Abrasion Stainless
Shield Steel

Thickness

(mm)

2.20

Thermal

Conductivity
(W/m.K)

220

1.30 1.25

0.20 340

0.25 1.25

0.30 50

*Heater turned off
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Abstract

A general two-dimensional Euler zonal method
has been developed for computing flows about com-
plex airfoil geometries such as multtelement and
iced airfoils. The method utilizes a cor_postte
structured and unstructured grid generated using
conformal mapping and Oelaunay- triangulation,
respectively. The finite-volume Euler method is
then modified to couple solutions tn the zones
with structured and unstructured grids. Solutions
about an Iced airfoil and a multtelement airfoil
are given as examples of applications of the
scheme.

l.O Introduction

The aerodynamic analysis of complex alrfoll
sections continues to receive much attention in

experimental, theoretical and computational stud-

ies. Such analyses of airfoil flows include Iced
airfoils, multielement airfoils, and advanced air-

foil concepts wlth divergent trailing edges. Con-
ventional computational methods based on a single

zone mesh, developed for simple airfoil configu-
rations, are generally not suitable for these

geometries since a single structured grid of suf-
ficient quality cannot be generated. Zonal or
unstructured-mesh methods that can provide ade-

quate mesh resolution near high pressure gradient
regions in each zone are needed to handle the
complexity of the flowflelds. An attractive zonal

approach is to use structured meshes in most parts
of the domain and unstructural meshes In enclosed

regions next to the portions of airfoil that are
difficult to model with structured grids. The
objective of this paper is to develop a general
two-dimensional Euler method based on this
approach.

Although many methods have been developed for

the generation of structured grids around simple
geometries, few can be readily extended to comp-
licated two- and three-dlmensional shapes such as

multielement or iced airfoils or multicomponent
aircraft configurations. Also, in many applica-

tions of structured grids, the quality of the
generated mesh is not uniform throughout the comp-
utational domain, resulting in poor resolution in
specific regions of importance. For this reason,
triangular (tetrahedral) meshes have proven very

attractive, since relatively complex geometries
can be meshed efficiently, and an almost arbitrary
degree of mesh adaption and refinement can be

achieved by the addition of control points. Fur-
thermore, the development of flow algorithms that

*Associate Professor.
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do not depend on the inherent structure of the
grld points have eliminated the restriction of
grid structure and made triangles and tetrahedrons
suitable shapes with which to resolve complicated
geometric regions.

The debate over relative advantages of struc-
tured and unstructured grid methods Is an ongoing
matter. While unstructured grid methods have the
clear advantage in that they can treat complicated
problems such as a complete aircraft configuration

under static or dynamic deformation, l they have
been regarded as less efficient and less accurate

than their structured counterparts.2, 3 Lack of

robust acceleration techniques, such as multigrid
schemes for three-dlmenslonal problems, Is also a
clear disadvantage. Furthermore, direct and

implicit solvers for unstructured grids are devel-
oped, but In general are not as efficient and

effective as their structured counterparts.4, 5

Structured flow solvers have many other highly
desirable features including efficient grid gen-
eration techniques and smaller computer time and
memory requirements.

An efficient way of analyzing a complex geom-
etry of several components is through a zonal
approach, using composite structured and unstruc-

tured grids. This approach requires considerably
less memory than using an entire unstructured mesh
capable of handling the same geometry. In vlew of
the different desirable features of structured and

unstructured meshes, the present zonal approach
takes advantage of structured meshes in appropri-

ate regions while using the versatility of the
unstructured grids in others.

In this paper, a general two-dimensional zonal
boundary interactive scheme utilizing combinations
of structured and unstructured mesh types is pre-
sented. Solutions for flow about multielement and

iced airfoils are given as an example of the
application of the scheme.

2.0 Grld Generation

A brief grid generation process will be des-

crlbed In this section. A base structured grld
which encompasses the entire flowfleld Is first

generated using existing methods. Regions of
undesirable grld quality are then identified and

categorized as subsequent unstructured-mesh zones.

Triangular grids can be generated In these regions
using existing mesh points and additional points

as necessary. An unstructured grid generation
method b_sed on Delaunay triangulation, developed
earller, ° is applied for this purpose. An
essential requirement for obtaining satisfactory

meshes when using the Delaunay trlangulator is



appropriate placement of interior points, since
this scheme gives no guidance on where to place
the mesh points. Inappropriate placement of mesh

polnts results In poor quality meshes, even though
they satisfy the Delaunay criteria. Therefore,
certain crlterla for introducing interior mesh

points have to be established before applying the

Delaunay triangulation.

The Delaunay trlangulatlon method is applled in
three steps to generate triangular meshes in the
unstructured zone enclosed by the surrounding
structured meshes and solid surface boundary. The

first step Is to trlangulate the polnts along the

body and zonal boundaries in order to obtain an
initial trlangulatlon based solely on existing

boundary points.

The second step deals wlth the placement of

interior points. It Is important to place a suf-
flclently dense mesh of points in high oh_adlent

regions such as corner regions, leading- and
traillng-edge regions, etc. A combination of

C-mesh points around the leading edge and
Cartesian mesh points in other parts of the
domain can be chosen as th_ interior points.
Based on Bowyer's algorithm," a series of new
points are added one by one to the existing tri-
angulation, removing triangles close to the point
being inserted, and reconnecting the new point to
the existing nodes in such a way as to form new

triangles which satisfy the Delaunay criteria.
This procedure Is repeated for all new points
introduced in the domain.

The final phase is a grld-smoothlng procedure.
This Is necessary because points that are intro-
duced sometimes fall too close to each other,

resulting in skewed triangles, such as triangles

with large aspect ratios. An Iteratlve Laplaclan
smoothing scheme is applied to improve the overall
quality of the unstructured mesh.

3.0 Finite Volume Scheme and Time-Stepplnq

finite volume Euler methods of Jameson B and

Mavrlplls and Jameson g, using fourth-order Runge-
Kutta tlme-stepplng, are adopted to Interactlvely
solve for the flows in different zones. These

methods are briefly reviewed here to point out
some modifications that are made in the present
work.

The Euler equation for two-dlmenslonal Invlscld

flow in integral form for a region _ with a
boundary a_ Is given as

a__
at If wdxdy + I (fdy - gdx) = 0 (1)

where x and y are Cartesian coordinates and

W =

p

pu . f
, =

pv

pE

pU

pv2+p

pUV

puH

; g=

pV

pUV

pv2+p

pvH

(2)

Here p, u, v, p, E and H are density, velocity
components, pressure, total energy, and total

enthalpy, respectively. For a perfect gas we have

2 2
E = p + u + v H = E + _

(y-l)p 2 ' p

Thus, we only need to solve for four variables: p,
pu, pv and pE. Equation (1) Is dlscretlzed over
individual control volumes (triangles) in a cell-
centered approximation in which the flow variables
are stored at the center of each cell. The above

dlscretlzatlon procedure wlth the addltlon of
artificial dlsslpatlon terms results in a set of

ordinary differential equations.

dw I
Sl dT + [O(wi) - O(wl)] " 0 (3)

where Si is the area of the cell, O Is the
spatial approximation of fluxes given by the sec-

ond part of Eq. (1), and O Is an appropriately
constructed dissipation operator.

The fourth-order Runge-Kutta scheme is used to

advance the solution in time from time step n to
time step n+l. With the nonlinear operator P

defi_d as

P(w) . _ [O(w) - O(w)] (4)

we have

w (0) = wn

w(1) = w(O) _ at_- P[w (0) ]

w (2) = w (0) _ _ P[W(1)]

w (3) - w (°) - at P[w (2))

(s)

w(4) = w(O) _ _t {p[w(1)] + 2p[w(1))

+ 2P[w (2)] + p[w(3)]}

w n+l = w(4)

The artificial dissipation operator is calculated
In the first and third step only to save computing
costs.

In the region with structured grids implicit

residual averaging Is used to lq_rease the base
of the CFL number. It is shown"u that implicit

smoothing increases the stablllty to Courant num-
bers much greater than the Courant number limit
of the explicit scheme, The calculations pre-
sented In this work are obtained with a CFL number

of 7. In addition, a variable tlme step, based
on the maximum stability llmlt set by the local

Courant number, and enthalpy damping are used to
accelerate the convergence of the solution. Dls-
slpatlon terms are formed as a blend of second-

and fourth-order terms, coefficients of which are
adapted to the flow. The resulting scheme is
second-order accurate in the regions of smooth
flow and flrst-order accurate near the shocks.

To ensure that these dissipative terms are slg-
nlflcant only in the vicinity of a shock, the

second-order dissipation terms are scaled by the
local Laplaclan in the pressure.

Similar to the structured flow solver, In the
unstructured flow solver fourth-order Runge-Kutta

time stepping Is also used to advance the solution

in time. The support of the tlme-stepplng scheme

=



here is, however, increased by an explicitly
residual averaging scheme. If the residuals at
cell I are

Ri(w) " h [Q(wl) - O(wl)]

they are replaced by

3

R'-_, cR i + 1 _ _ k!l Rlk

where Rik are residuals at three forming points
of the triangular cell. The residuals at nodal
points are obtained as the average of residuals

at all cells having that point In common. _ Is
a constant which is chosen as 0.6. With this

smoothing scheme, the CFL number for the unstruc-
tured flow solver could also be increased to
about 7.

It Is found that the CFL number In the two

zones must be similar to facilitate the converg-
ence of the solution in the entire domaln.

4.0 OisslpatlVe Terms

The structured flow solver uses a blend of

second- and fourth-order dissipation terms to
prevent odd and even decoupllng of the solution.
The artificial dissipation for the unstructured

flow solver is similarly constructed as a blend
of undivided Laplacian and blharmonIc operators.
Generally, in the absence of shocks in subsonic

flows, only blharmonlc dissipation is required.
However, it is found that in regions of large
pressure gradients such as at the leading edge of

the flap, second-order dissipation terms are still
needed even in the subsonic flow regime.

To obtain the fourth-order dissipation term In

the triangular mesh zone, an undlvlded four-polnt
Laplaclan operator is first defined as

3

v2wl = k!l wK - 3wI

where w represents the flow variables p, pu, pv,
and pH. The dissipation flux across a cell face,

Ik, delimiting cells, I, and its neighbors, k, are
then calculated as

c(4) -

- v2w k) (6)dlk " Ik Ak{V wl

where

Ak - lukAYk- VkAXkl + CK V ax_ + ay_

Here Axk and Ayk are coordinate increments of the

edge and uk, vk, ck are velocity components and
the speed of sound along the edge, respectively,

and are taken as the average of the values at
cells I and k. The Ak term, which is propor-
tional to the size of the cell face, k, and repre-

sents the maximum elgenvalue of the Euler equa-
tion in the direction normal to the face, scales
appropriately with the time derivative in Eq. (3).

In order to more accurately scale the cells which

have higher aspect ratios, Ak is not integrated

around the boundary of (t_e control volume, as is
commonly done. The c ;_ Is a constant defined
later.

The second-order dlsslpa_ion ter_ is similarly
constructed by replacing V wi and v wk in Eq. (6)
wlth w I and Wk, respectively, so that we have

(2)
dlk - elk Ak(W i - wk)

(2) should be of order one near a shock andwheEe elk

and of order (Ax)2. In reglons of smooth flow to
preserve tne seco))_oroer accuracy of the scneme.
To ensure this, _k" Is then scaled proportional
to an undivided La_laclan in the pressure

3

Z Pk - Pi
k--l

It iS found, however, that a better scaling factor

for the edges that are on the solid boundary is
the pressure gradient in the surface-wise direc-

tion. Thus, the pressure gradient term for cells
on the solid boundary is defined here as

Pi = ( + 2Pi )P%+l +Pi-I

where I, i-l, and i+l are the adjacent cells to
cell t, which are on the surface boundary. For
these cells, ¢(_ is then taken as

c(2) " c2 Pi' )Ik max(Pl-l' )i+l

It is known that the fourth-order dissipation
term may produce overshoots in the vicinity of a

shock; therefore, they are turned off by defining

cl_) max[O, c(4) ,(2)I= Ik - Ik J

Here c2 and c4 are empirically determined
constants.

The final form of the dissipative flux is then

dik " _I_ )Ak(w i - Wk) + cl_)A k(v2W i - V2Wk)

This dissipation flux, dik , is added or sub-
tracted from its adjacent cells consistent wlth

the direction of the normal to each edge. This

ensures that dissipation Is conserved throughout
the region.

The treatment of the boundary conditions is

known to affect the convergence and accuracy of
the solution. The wall pressure can be extrapo-
lated from the pressure at the center of the

boundary cell using the method given in Ref. B.
However, In the present calculations it is found,

In both the structured and unstructureO solvers,
that the normal pressure gradient, ap/an, is
negligible, and the pressure of the boundary could
be assumed equal to the pressure at the center of
the boundary cell.

It is important to note that when the solid
boundary condition is imposed in the unstructured

flow solver, however, is that setting the normal
components of the fluxes to zero and only account-

ing for the pressure terms in the momentum equa-
tion does not necessarily satisfy the flow tan-

gency condition on the boundary. A stronger

3



formulation ls needed to ensure this requirement.
In the present cell-centered scheme, a stronger
form of the boundary condition is imposed in order
to compute the artificial dissipation terms more
exactly. Flow variables p, pu, pv, H in imaginary
cells inside the solid surface are extrapolated
based on the assumptions of no normal flux and
equal tangential fluxes between cells outside and
inside the boundary. These values are then used
in the calculation of dissipation terms associated
with the edges that are on the boundary. This can
be shown to be equivalent to explicitly setting
velocities to be tangent to the wall, as suggested
in Ref. 11.

S.O _onal ,!pterferenc_ $chgme

Interaction between neighboring zonSs could be
greatly simplified by ensuring that neighboring
structured and triangular grids have complete,
common, edges. This could easily be done along
the zonal boundaries by choosing the structured
grid points as forming points of the triangular
grids. Mass, momentum and energy fluxes through
the zonal boundaries are conserved by using the
values from neighboring zones when calculating
fluxes. This requires maintaining information on
the grid interaction, including indexes of struc-
tured grids next to the boundary triangular
meshes, and vice versa.

Careful attention must be given to calculation
of dissipation terms for the boundary cells in

order to ensure conservation of dissipation terms
throughout the flow. Olsslpatlon terms for the

triangular, boundary cells are calculated by
extracting information from both the structured
and unstructured zones and vice versa. Inappro-

priate treatment of dissipation terms can result
in solution inaccuracy along the zonal boundaries
or can produce considerable decoupllng of the

solution In boundary regions of both zones and
contaminate the solution in the entire region. It
is also found that comparable CFL numbers and
degrees of smoothing in different zones, are
essential to improve the overall convergence of

the solution in the entire region.

6.0 Results

The multtelement airfoil of Fig. 1 with over-

hang of 5%, gap-to-chord ratio of 10%, and flap
angle of rotation of 15 ° Is considered as the
first computational example. The isobar solution
at a Mach number of 0.2 is shown in Fig. 2, which
indicates a smooth solution across the zonal
boundaries. This solution is obtained by using
256 x 32 O-meshes, part of which are replaced by
9?6 triangula[ meshes. A CFL of 7, along with a
variable time step based on a maximum limit set
by local Courant number, is used in both zones.

Figure 3 shows the details of the solution in
the unstructured zone and indicates that the

strong form of the boundary condition discussed
earlier in Section 4.0 adequately satisfies the
flow tangency requirements on the solid boundary.

The solution also accurately predicts the location
of the stagnation point on the leading edge of the
flap. Furthermore, even though the equations are
Invlscld, the addition of dissipation terms intro-

duces viscous flow llke vortIcity in the flap
well.

Calculated surface pressures for both the main
airfoil and the flap are compared with experi-
mental data of Ref. 12 in Fig. 4{a,b). The exper-
imental results are obtained at a M = O.lg5 and
Reynolds number of 500,000 based on unextended

chord length. The comparison is obviously very
poor In the flap well region due to the viscous
effects which are dominant in this region. Our
tnvtscld model also is unable to predict the sep-
aration that occurs on the upper surface of the
flap as indicated by the experimental data.

Our second computational example deals with
iced airfoils. The analysis of the aerodynamic
performance of lced airfoils has been of great
interest to aircraft designers. In order to find
ways to prevent ice formation on wings, one needs
to accurately predict the flowfield about iced
airfoils with various Forms of ice shapes. 13
Ice accretion on an airfoil produces very irreg-
ular and rough surfaces on the leading edge
region. These shapes normally have concavities
and convexities which cannot be modeled using a
single zone structured grid.

An iced NACA 0012 airfoil with an elght-mlnute
Ice surface computed using the fortified Lewlce
program of Ref. 14 is shown in Fig. 5. A compos-

ite structured and unstructured grid is generated
consisting of lg8 x 32 O-meshes, part of which are
replaced by g32 triangular meshes. The unstruc-
tured mesh region is extended far enough to cover
the irregular ice shape on the leading edge. A
converged solution obtained using this mesh is
presented in subsequent figures.

Figure 6 shows the isobar solutlon obtained at
M = 0.2 and = = 4 ° . The compressibility effects
at this Mach number are less than 2%, according to
the Prandtl Glauert rule. The contour lines vary
smoothly across the zonal boundary indicating that
the conservation of fluxes is well satisfied.

Figure 7 shows the velocity vectors in the
leadlng-edge region. This figure clearly indi-

cates that there are multiple stagnation regions
where streamlines approach the surface from the

farfleld and are divided in two opposite direc-
tions on the surface. There is also a small

region of reverse flow on the upper surface.
Similar to the first example, although the equa-

tions are Invlscld, the addition of dissipation
terms produces viscous flow llke vortlclty behind
the ice shape on the upper surface.

-The computed pressure dlstrlbutlon on the

surface is compared with the surface panel method
results in Fig. B; good agreement is indicated.

).0 Conclusion

The objective of the present work Is to develop
an efficient and reliable two-dlmenslonal zonal

approach capable of coupling structured and un-
structured grid zones for complex airfoil shapes.
This approach requires considerably less memory
compared to using an entirely unstructured mesh

capable of handling complex geometries. It also
takes advantage of the different desirable fea-
tures of structured and unstructured meshes.

Computational examples are presented that demon-
strate the applicability of this method to the

analysis of the flowflelds such as those around
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iced airfoils, multlelement airfoils, and blunt

and dlvergent-traillng-edge airfoils, lhe method
could also be coupled with a boundary-layer method
to include the viscous effects.
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Abstract

Tests were conducted in the Icing Research
Tunnel (IRT) at the NASA Lewis Research Center to
document the repeatability of the ice shape over the

range of temperatures varying from -15°F to 280F.
Measurements of drag increase due to the ice
accretion were also made. The ice shape and drag
coefficient data, with varying total temperatures at
two different airspeeds, were compared with the
computational predictions. The calculations were
made with the 2D LEWICEflBL code which is a
combined code of LEWICE and the interactive
boundary layer method developed for iced airfoils.
Comparisons show good agreement with the
experimental data in ice shapes. The calculations
show the ability of the code to predict drag increases
as the ice shape changes from a rime shape to a glaze
shape.

Introduction

Over the past few years, the Icing Research
Tunnel (IRT) at the NASA Lewis Research Center
has gone through several rehabilitations which have
improved its capabilities in simulating real icing
conditions. Some of the improvements include a new
and more powerful fan motor, a new spray bar
system, a new digital control system, and various
improvements to the IRT structure. As a result, the
IRT can now provide more accurate control of the
airspeed and temperature, more uniform clouds
covering a larger cross-section of the test section,
and lower liquid water content.

Although various test programs have been
conducted in the IRT with the improved capabilities,
there has not been a comprehensive test program to
document the repeatability of the data obtained in the
IRT. Tests were conducted to address the
repeatability issue during the months of June and
July of 1991. The test matrix was focused to
document the repeatability of the ice shape over a
range of air temperatures. During the tests, the drag
increase due to the ice accretion was also measured.
This test program also provided a new database for
code validation work.

The LEWICE code, which is being used by
industry and government to predict two-dimensional
ice accretions, was combined with the interactive
boundary layer method to also predict the resulting
aerodynamic penaltiesl (This combined code is
referred to as the 2D LEWICEflBL code.). An initial

validation study 2 was made last year, in which the
code predictions were compared with the
experimental results of Olsen, et al. 3 The results
showed good agreement between the experiment and
the calculation for both ice shapes and the resulting
drag. More comparisons of calculations with
experimental data were recommended and the recent
repeatability test provided a needed data set.

In this paper, comparisons of measured ice
shapes and predicted ice shapes are presented for a
range of temperatures with two different airspeeds
and liquid water contents. Resulting drag increase is
also compared between the experiment and the
calculation.

Nomenclature

A damping-length constant
c airfoil chord
Cd drag coefficient
ks equivalent sand-grain roughness

iq"_ dimensionless sand-grain roughness
L mixing length
T'r total air temperature
Ts static air temperature
u_ friction velocity

V. airspeed
x surface coordinate
y coordinate perpendicular to x

y+ a Reynolds number, y u_/v

x universal constant, also used as a sweep
parameter

v kinematic viscosity

Descrivtion of the Experiment

lcin_ Research Tunnel

The NASA Lewis Icing Research Tunnel is a
closed-loop refrigerated wind tunnel. Its test section
is 6 ft. high, 9 ft. wide, and 20 ft. long. A 5000 hp
fan provides airspeeds up to 300 mph in the test
section. The 21,000 ton capacity refrigeration can

control the total temperature from -40°F to 30°F.
The spray nozzles provide droplet sizes from

approximately 10 to 40 t_m median volume droplet
diameters (MVD) with liquid water contents (LWC)

ranging from 0.2 to 3.0 g/m 3. A schematic of the
tunnel, shop, and control room is.shown in Fig. 1. A
detailed description of the IRT can be found in
reference4.

Test Model

The test model was a 6 ft. span, 21 in. chord
NACA 0012 airfoil with a fiberglass skin. The model
was mounted vertically in the center of the test
section. During all icing runs, the model was set at
4 ° of angle of attack. The model installed in the test
section is shown in Fig.2.

Test Conditions

The test points used to make comparisons with
the calculation in this paper were selected from the
larger test matrix which is fully described in
reference 5.



The test conditions given in Table I can be
grouped into two: I) low airspeed and high LWC,
and 2) high airspeed and low LWC, Water droplet
size was held constant for both groups. Airspeed,
LWC, and spray time were selected so that both
groups would have the same water intercept (i.e.
airspeed x LWC x spray time = constant). Temperatures
were selected to cover glaze, rime, and transition
regimes.

Test Methods

A typical test procedure for icing runs is listed
below.

L= r(y+Ay){l-_p[-(y+,_y)/A]} (I)

where Ay isa function of an equivalentsand grain

roughness ks. In terms of dimensionless quantities,
4-

with ks =ks u_/v andAy4-=Ayu¢/v

Ay + =

0.9[q_-k_exp(-_/6)] 5</q"g 70

0.7(k,+)°'s_ 70< ,_" < _o
(2)

1. The model angle of attack was set. The equivalent sand grain roughness for ice is
2. The target airspeed and total temperature were determined from the expressions used in the original

set. LEW'i-CE code.. _ + ".......

3. The spray system was adjusted to the desired .....
MVD and LWC. The heat transfer model used in the LEWICE

4. The spray system was turned on for the desired code makes use of an equivalent sand grain
spray time. roughness, ks, expressed as a function of LWC,

5. The tunnel was brought down to idle and_the frost static air temperatur e (Ts), and airspeed ( V. ).
beyond the ice accretion was removed. -. :

6. The wake survey was traversed across the airfoil The original expression for ks is in the following
wake with the tunnel at the target airspeed, formwiths denoung the airfoil chord and (ks/c)base

7. The tunnel was brought down to idle again for ice = 0.001177
shape tracings and photographs.

8. The airfoil was then cleaned and the next data k.,/c _ t k,/c _ Iq/c
pointwas performed, k, = [(k,lc)_,,aLwc.t(k,lc)_,,,Jr..[( _/C )b_,,Iv"

Drag Wake Survey

The section drag at the mid-span of the airfoil
was calculated from total pressure profiles measured
by a pitot-static wake survey probe. The wak_
survey probe was positioned two chord lengths
downstream of the airfoil as shown in Fig.2. The
wake surveys were made only when the spray cloud
was turned off. During sprays, the probe was kept
behind a shield to prevent any ice accretion on the
tip of the probe. The wake probe was mounted on an
automatic traverse system, and the traversing speed
was adjustable.

Description of 2D LEWICE/IBL

LEWICE is a two-dimensional ice accretion code
which has a Hess-Smith two-dimensional panel code
for a flow calculation, a droplet trajectory and
impingement calculation code, and an icing
thermodynamic code. Detailed description of the
code can be found in reference 6.

Several modifications have been made to the
original LEWICE code to add a capability of
calculating aerodynamic characteristics by making
use of the interactive boundary layer method
developed by Cebeci, et al 7. Along with this new
capability, a modification was made to the original
LEWICE so that the calculation can be made in a
user interaction-free environment. This was achieved

by using a smoothing routine_ to avoid the
occurrence of multiple stagnation points caused by
the formation of irregular ice surfaces on the ice
shape.

During the development of the 2D LEWICE/IBL
code, a turbulence model has also been developed to
deal with surface roughness such as that associated
with ice. This was done by modifying the mixing
length and wall-damping expression of the Cebeci-
Smith model, that is

.(_-),=,.c
c (3)

where each sand grain roughness parameter is given
by

k.,/e
• , , .' ILWC
I. g, IC )b_e

= 0.5714 + 0.2457(LWC) + 1.2571(LWC) 2

lqIc 0.047T, - I1.27
[(k,lch,,,lr,=

lq/c
(k,lch,=,jv. = 0.4286+ 0.004-4139_'=

(4)

(5)

(6)

Recent numerical studies conducted byShin, et
al. 2 showed that the equivalent sand grain roughness
did not depend on airspeed, but did depend on the
median volume diameter (MVD) of the water
droplets. As a result, equation (3) is modified, as
given by equation (7).

Ic.,Ic lqIc ]r,
k,= 0.6839[(/q/c)b_,,]twc. [(lqIc)_,

]MVD =

where

[( IqIc),,_,

•1( /q/"------L--c]uvo.(_ h,,,,.clq/C)b_, C (7)

1 MVD < 20

1.667-0.0333 AfVD MVD > 20
(8)
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The interactive boundary layer method then uses a
roughness parameter as given in equation (9) over
the predicted iced surface.

(ks)IBL = 2(ks)equation (7) (9)

Present studies as well as those conducted in
reference 2 showed that drag coefficients calculated
with the roughness parameter by the above method
were much lower than measured drag coefficients,
especially for rime ice shapes. Numerical studies
were conducted to investigate the effect of the extent
of the iced airfoil surface on drag. In the original
version of the 2D LEWICE/IBL code, roughness is
only applied over the surface of the ice. The code
was modified to allow for roughness on both the ice
and the airfoil surface downstream of the ice. The
results showed that agreement between calculated
and measured drag coefficients for rime ice shapes
became much better by extending the range of the
roughness on the airfoilsui'faceand placing a lower
limitof ks/c = 0.002 on the equivalent sand grain
roughness, which otherwise would become very
small for rime ice. The extent of the iced airfoil
surface which resultedinthe best agreement with the
experimental drag coefficientsfor rime ice shapes
was found to be 50 percent of the airfoilchord, and
this extent was used in all drag calculations
presented in thispaper.

Results and Discussion

This section contains a discussion of the quality
of the experimentaldata, and discussions of the ice
shape comparison and the iced airfoil drag
comparison.

Ouality of Experimental Data

Dry_ airfoil drag results - Section drag was measured
with the clean airfoil under the dry condition and the
results are compared with the published data 3,8.9 as
shown in Fig.3. The data of Abbott and Doenhoff 8
was taken in the Low Turbulence Pressure Tunnel
(LTPT) at the NASA Langley Research Center. The
data of Olsen, et al. 3 and the data of Biaha and
Evanich 9 were taken in the IRT.

The difference between the data from the LTPT
and the IRT can occur for several reasons:
differences in wake survey method, tunnel
turbulence level, and model condition. The LTPT
tests used a wake rake while the IRT tests used a

traversing probe. The LTPT had the freestream
turbulence intensityof the order of a few hundredths
of 1 percent. The freestreamturbulence intensityin
the IRT is about 0.5 percent. The difference in the
surface finish of a model can also have an effect on
drag.

The current IRT drag data is higher than the
previous IRT data. All three tests used the wake
survey method and the airfoils had the same chord
length. This kind of difference in drag data can come
from differences in the wake survey location and
model condition. The wake survey probe was located
at one chord length behind the model for Blaha' s test
while it was located at two chord lengths behind the
model for Olsen's test and the current test. The
leading edge and the trailing edge part of the current
model were joined at the maximum thickness location
(30 percent of the chord) while the model used in
both reference 3 and 9 was the same one-piece

airfoil.

According to the experimental results of Gregory
and O'Reilly l0 shown in Fig.4, transition occurs at

around 40 percent chord at 0 ° of angle of attack for
an NACA 0012 airfoil at a Reynolds number of 3
million. The transition location moves upstream very
rapidly as the angle of attack increases. A small step
at the joint in the current model may have acted as a
trip at low angles of attack causing an early
transition to turbulent boundary layer. At higher
angles of attack, the step may have acted as an
additional roughness source in the turbulent
boundary layer, which increased drag.

Drag associated with an iced airfoil is normally
dominated by the pressure drag due to a large
separation caused by a pressure spike at the upper

horn. At 4e of angle of attack, where all the icing
runs were made, an increase of the friction drag by
the step of the current model is believed to have a
minimal effect on icing drag data.

Repeatability of dry airfoil drag measuremenl_ -
Dry runs were made prior to each icing run. Each
icing run was repeated at least twice, which resulted
in more than 28 dry airfoil drag measurements at a
4° angle of attack. The percent variation was
calculated in the same way as Olsen 3 by taking the
standard deviation and dividing it by the average.
The average Cd value at a 4 ° angle of attack was
0.01068. The percent variation was 7.1 percent of
the average value. The percent variation reported by
Olsen was 7.7 percent.

Repeatabilityof the ice shapes and resuhing drag
Each data point was repeated at least twice to

ensure repeatability of the ice shape and drag
measurement. Ice shapes and measured drag
coefficients of three repeat runs for typical glaze ice

(22°F) and rime ice (-15°F) cases at two airspeeds
are shown in Figs. 5 and 6.

At all four conditions, the ice shape repeats well
and the variation of the drag coefficient is within the
percent variation of the measurement. The larger
percent variation is seen with glaze ice, however the
variation is much smaller than that reported in
Olsen 3.

Comparison Between Calculated and Measured Ice
£lmm

Ice shapes were computed with the 2D
LEWICE/IBL code for the icing conditions shown in
Table 1. Since the code runs without any user
interactions, the only variable which can influence
the ice shape for a given icing condition is the time
step. Previous investigation 2 suggested that the use
of 1 minute time interval resulted in the best
agreement with the experimental ice shapes.

To ensure the above finding still holds true, the
effect of time step was investigated with all icing
conditions at the airspeed of 150 mph. Four different
time intervals, 0.5, I, 2, and 6 minutes, were used.
Figure 7 shows the results for a glaze ice, a rime
ice, and a transition case. The use of a longer time
interval results in more ice accretion as seen in all
cases. Based on the comparison with the
experimental data, 1 rain time step was chosen for all
the calculations.



Figure 8 shows calculated and measured ice
shapes at various temperatures. The experimental ice
shape changes from white, opaque rime ice to
slushy, clear glaze ice with increased temperature.
Airspeed was set at 150 mph. Experimental ice
shapes were taken at the mid-span of the model
where the wake survey was made. The agreement
between calculatedand measured ice shapes Is good,
particularly for rime ice cases. Icing limits are
predicted well for the temperatures below 18°F. At
warmer temperatures, the calculation predicted more
run back which resulted in more ice accretion beyond
the experimental icing limits. The direction of horn
growth is predicted reasonably well, but in general
the size of the predicted ice shape is larger than the
measured shape.

Figure 9 shows ice shape comparison as a
function of temperature at the airspeed of 230 mph.
Comparisons show similar results as the lower speed
cases. Good agreement is shown at all temperatures

except at 28°F where an overprediction of upper
horn is seen.

Comparison between Calculated and Measured Dra_

Calculated drag coefficients were compared with
measured drag coefficients for the ice shapes shown
in Figs,8 and 9. With each icing run, the wake
survey was made twice: one made while the probe
traversed away from the shield, and the other made
while the probe traversed back to the shield. Each
measured drag coefficient in Table 2 is the averaged
value of the two measurements at each icing run.
Calculated drag coefficients are also included in
Table 2 for comparisons.

Results in Table 2 are plot_l in Figs. 10 and 11.
For both airspeeds, the experimental data show
almost constant measured drag coefficients up to
around 12°F and a sharp increase toward near
freezing temperatures as the ice shape changes to

glaze ice. For V, = 150 mph, calculated drag
coefficients agree very well with measured drag
coefficients up to 12°F and begin to rise sharply at

around 18°F. While calculated drag coefficients

reach a peak at around 22°F and begin to decrease,
measured drag coefficients continue to rise and reach
a peak at around 28°F. For V,--230 mph, however,
the calculated results does a good job of following
the trend in measured values.

Concluding Remarks

The ice shape and drag coefficient results of the
experimental program conducted in the IRT were
compared with the predictions using the 2D
LEWICE/IBL code. Experimental data provided
validation data to further calibrate the code with
various icing parameters such as the temperature,
airspeed, and LWC. Good agreement in the ice shape
was shown for the rime ice. The agreement
deteriorated for the glaze ice, although the direction
of the horn growth was generally predicted well.
Deterioration in ice shape prediction for glaze ice is
a typical characteristic shown with the original
LEWICE code. The ice shape comparison results
indicate that the modifications made to the original
LEWICE code in the process of combining it with
the interactive boundary layer method work well.

The results of the drag comparison study show
the ability of the code to predict the sharp drag
increase displayed by the experimental data as the ice
shape changes from rime to glaze. The adjustment
made by extending the roughness beyond the icing
limit on the airfoil allows the calculated drag values
to agree well with experimental data. More studies
are needed to better estimate the extent of icing on
the airfoil surface.

The big strength of the 2D LEWICE/IBL code is
the economy of the computing time. A typical
computing time (CPU time only) to complete a
calculation of 6 or 7 minutes ice accretion and its
aerodynamic characteristics was less than 50 seconds
on a CRAY X-MP.

More comparison work is needed to check the 2D
LEWICE/IBL code for further improvements. The
test points of the repeatability test in the IRT were
reduced from the original test plan due to the loss of
tunnel time. More tests are planned to document the
effects of other icing parameters on the ice shape and
resulting drag. It is also planned to obtain
experimental llft data with iced airfoils for code
validation work.
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Table 1. Test Conditions

Air
Speed LWC MVD
(mph) (g/m 3) (i.un)

150 1.0 20

150 1.0 20

150 1.0 20

150 1.0 20

150 1.0 20

150 1.0 20

150 1.0 20

230 0.55 20

230 0.55 20

230 0.55 20

230 0.55 20

230 0.55 20

230 0.55 20

230 0.55 20

Total Ice
Temperature Accretion

(rain.)

28 6

25 6

22 6

18 6

12 6

1 6

-15 6

28 7

25 7

22 7

18 7

12 7

1 7

-15 7

Fig.2. NACA 0012 Airfoil and Wake Survey Probe.
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Table 2. Effect of Total Air Temperature on Drag Coefficient.

(a) Airspeed=150 mph, LWC=I.0g/m3, MVDffi20pm (b) Airspeed=230 mph, LWCffi0.55g/m3, MVD=20ttm

Total
Temperature

eF)
28

Expedmcn_
Drag

Coefficient

Calculated
Drag

Coefficient

0.0578 0,0346

25 0.0540 0.0372

22 0,0315 0.0392

18 0.0271 0.0351

12 0.0229 0.0217

1 0.0229 0,0209

0.0233-15 0.0202

Total
Temperature

Experimental
Drag

Coefficieat

Calculat_
Drag

Coefficient

28 0.0428 0.0470

25 0.0371 0.0294

22 0.0311 0.0202

18 0.0268 0.0195

12 0.0255 0.0195

1 0.0234 0.0195
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Abstract

Recent work on the analysis of iced airfoils
and wings is described. Ice shapes for multi-
element airfoils and wings are computed using an
extension of the LEWICE code that was developed
for single airfoils. The aerodynamic properties
of the iced wing are determined with an inter-
active scheme in which the solutions of the
lnvlscid flow equations are obtained from a panel
method and the solutions of the viscous flow
equations are obtained from an inverse three-
dimensional flnite-difference boundary-layer
method. A new interaction law is used to couple
the lnvtscld and viscous flow solutions.

The newly developed LEWICE multlelement code
is applied to a hlgh-llft configuration to
calculate the ice shapes on the slat and on the
main airfoil and on a four-element airfoil.

The application of the LEWICE wing code to the
calculation of ice shapes on a MS-317 swept wing
shows good agreement with measurements. The
interactive boundary-layer method is applied to a

tapered iced wing in order to study the effect of
icing on the aerodynamic properties of the wing

at several angles of attack.

to multtelement airfoils so that ice shapes on the
main airfoil and on the flap can be computed as
well as on the slat. This will permit the effects
of icing on high-lift configurations to be com-
puted using the interactive boundaEy-layer method
recently developed by Cebect et al. u

For wing flows, our research followed a similar
path, concentrating on the development of (1) a
three-dimensional version of the LEWICE code, (2)
a three-dimensional interactive boundary-layer

(IBL) method for iced wings, and (3) the coupling
of the IBL method to the LEWICE code to determine
the ice shapes and their effects on ilft, drag
and moment coefficients for wing flows.

The progress to date for airfoil flows is des-
cribed in several papers. For this reason the
present paper concentrates mainly on three-
dimensional flows and describes the extension to

_ wing flows of the combined LEWICE/IBL procedure
developed for airfoils. Section 2 describes the
method for calculating ice shapes on the leading
edge of a wing and presents a comparison between
_alculated and experimental results. Section 3
describes the interactive boundary-layer method
for computing three-dimensional flows on iced
wings. In addition, this section presents the
results obtained from the application of this

1.0 Introduction

In recent years there has been considerable

research activity in the area of aircraft icing
to combat the adverse effects of leadlng-edge ice
formation on fixed and rotary wing aircraft and

on engine intakes. Computational work and related
experimental studies have been initiated and are

being carried out under the NASA Aircraft Icing
Research Program to develop and validate a series
of mutually compatible computer codes to predict
the details of an aircraft icing encounter, l

The papers presented each year at the the AIAA
Aerospace Sciences Meeting and the papers pre-
sented in this symposium show that indeed much

progress has been made in this area.

In this paper we report a summary of our prog-
ress in predicting ice shapes on airfoils and

wings and in determining the effect of ice forma-
tion on aerodynamic performance degradation. For

airfoil flows, our research has led to improve-
ments In the LEWICE code for predicting leading-
edge ice formation _ and to the development, of an

interactive boundary-layer (IBL) method 4 for
determining th_ increase in drag and loss of llft
of alrfoils 9,b and helicopter blades 7 due to

icing. This capability for predicting ice shapes
on airfoils has also been extended by the authors
to include airfoils with slats, and very recently

* Professor and Chairman.

** Associate Professor.

t Research Professor.
_f Research Associate.

method to a NASA MS 317 tapered wing wlth ice and

to an unswept NACA 0012 wing without ice. In each
case, the Invlscid and viscous flow equations are
solved Interactlvely to determine the increase in

drag due to ice and to compare the calculated

pressure coefficients with measured values. Sec-
tlon 4 presents recent results obtained for multi-
element alrfoils and is followed by concluding

remarks.

2.0 Extension of LEWICE to Wlngs and

_ts Validation

The extension of the LEWICE airfoil code to

wings is not so straightforward. There are sev-
eral possible approaches that can be pursued. In
each approach the flowfleld calculations should

be performed In principle using a three-dlmen-
slonal inviscid method, and the impingement pat-

tern of the water droplets on the surface should
be determined by performing trajectory calcula-
tions for the three components of the velocity
obtained from the Invlsc|d method. The heart of

the LEWICE code, however, is the third module that
contalns the quasl-steady-state surface heat

transfer analysis in which mass and energy equa-
tions are solved for a two-dlmenslonal flow In

order to determine the ice shape and size. The
extension of this module to three-dlmenslonal

flows would require the heat balance equation,

developed for airfoil flows, to be modified to
wlng flows. And, as discussed in Ref. 9, thls

can only be done with the help of experimental
data that presently do not exist. As a first

step, it is best to leave the heat balance in its



two-dimensional form and assume It to apply to a
three-dimensional body expressed In an equivalent
two-dimensional form. One approach, followed by
Potapczuk and B1dwell, 10 Is to perform the tra-
Jectory calculations for a three-dimensional flow-
field and apply them along the streamlines on the
wing. Another approach, followed in Ref. 9, ls
to approximate the 3-O wing by an equivalent yawed
infinite wlng at each spanw%se station. In this
case, the flowfleld is calculated by a three-
dimensional panel method and the particle trajec-
tories calculated for flow normal to the leading
edge subject to the lnflnlte swept-wing assump-
tion. Another approach is to apply the LEWICE
airfoil code to the strean_lse cross-section of
the wlng. This approach has at least two alterna-
tives, one of which is described In this paper.
The accuracy of these three approaches and others
depend on the angle of attack and the spanwise
location of the airfoil section, and" they require
a careful evaluation through comparisons with
experimental data.

2.l Comparison of Measured Ice _hapes and Pre-
dictions Obtained wtth Yawed WlnQ Approximation

(a)

The calculated results obtained with the exten-

sion of the LEWICE airfoil code to wing flows by
the method of Ref. g are shown in Figs. 1 and 2 (b)
together with the experimental results ll on an
MS-317 swept wing. A summary of test conditions
used in the calculations are given in Table 1.
Additional studies for other test conditions are
in progress and wilt be reported later. The calc-
ulated ice shapes in Figs. 1 and 2 were obtained
for the untapered wing wlth a MS-317 airfoil sec-
tion defined strean_lse with a sweep angle of 30 °
and an aspect ratio of six. All trajectory and
ice accretion calculations were carried out for

lnviscid flow computed on the mld-semispan section
where the spanwlse pressure gradient was negligi-
ble. All calculations were performed for one time
step to save computer time, which Is approximately (c)
7 minutes per run on the Cray computer. The in-
crease in time, in comparison wlth the two-
dimensional case, is primarily due to the trajec-
tory calculatlons where, despite the yawed infi-
nite wing approximations, the computation of the
off-body velocities involves repeated large matrix
multiplications in which all wing panels are

represented.

Figure la shows a comparison of measured and
calculated Ice shapes for Run 8, which corresponds
to T® = 0 °, _ = 2 °, t = 390 sec. As can be seen,
the agreement between measured and calculated
results is remarkably good. The calculated
results for a calculation time of 1164 sec and for

T® = O°F and a = 2" (Run ll) are shown In Fig. lb
and indicate reasonable agreement with measure-
ments despite the one tlme step used In the calc-
ulations. It is expected that the ice growth will
have some effect on the velocity field and on the
calculated droplet impingement. A comparison of
predicted and measured ice shapes obtained for
T® = O°F at Q . 8 ° for t = 390 and 1164 sec. (Runs
9 and lO) are shown In Figs. lc and ld, respec-
tively. The agreement ls again reasonable, keep-
ing in mind that only one time step was used in
the calculations.

(d)

The next set of studies was conducted for a

slightly higher freestream temperature of T®
= 15°F, representing an icing condition for which

Fig. I. Comparison of calculated (solid lines)
and measured (dashed lines) ice shapes. Rime ice:

(a) Run 8, (b) Run II, (c) Run 9, (d) Run lO.

a mixed ice growth was observed. Run 7 in Fig. 2a
for _ = 2 ° and t = 390 sec. indicates good agree-
ment between experiment and theory, except for
some deviation on the upper surface. The results

In Flg. 2b at the large time step of t = I164 sec.
(Run l) are more or less in agreement in predict-

ing the amount of ice accumulated, but they differ
in predicting its shape. It is known from two-
dimensional calculations that a large number of
relatively short time steps are needed to predict
horn-shaped ice for glaze ice. Since the mixed
ice formation tends toward glaze ice shapes for



(a)

(b)

(c)

Flg. 2.
and measured (dashed lines) ice shapes.
Ice: (a) Run 7, (b) Run l, (c) Run 6.

Comparison of calculated (solid lines)
Mixed

Table I. Test Conditions for MS-317 Ice Accretion

Experiment of Ref. 8, V® = 150 mph, d = 20 wm,
LWC = 1.03 gm- _.

T t

Run _ _ d.(_d_eq]. (ks/c)l

l 15 I164 2.0 0.00192

6 15 I164 B.O 0.00192
7 15 390 2.0 0.00192
8 0 390 2.0- 0.00127

g 0 390 8.0 0.00127
lO 0 1164 8.0 0.00127
II 0 I164 2.0 0.00127

large times, it is not surprising that one time
step calculation is not sufficient to predict the
actual growth of the ice shapes. Similar comments
apply to Fig. 2c, where comparisons are for a

large time step of t = 1164 sec. (Run 6), but at
= B ° .

2.2 Comparison of Measured Ice Shapes and Pre-
dlctlons Obtained with Strip Theory Approxlmc.tion

Additional calculations were also performed
with the LEWICE code to determine the ice shapes
on the leading edge of the MS-317 swept wing dis-
cussed In the previous subsection. This time we

used the strip theory approximation rather than
the yawed wing approximation. We ca]culated the

three-dimensional velocity fteld from the panel
method and used the veloctty distribution in the
LEWICE code for the streamwlse alrfo%] section.
Figure 3 shows a comparison between the ice shapes
computed with strip theory (2-0) and yawed wing
(3-0) approximations together wtth the measured
Ice shape for run ll. AS can be seen, both calc-
ulated ice shapes, at least for this run, agree
reasonably well with experimental data. Addi-
tional studies are underway to further investigate
the dlfferences between the two procedures.

Fig. 3. Comparison of calculated ice shapes with

experimental data. 2-D represents the ice shape
with strip theory approximation and 3-D that with
yawed wing approximation.

2.3 The Role of Wlnd Tunnel [ffect on the talc U-
latlon of Ice Shapes

In general, infinite yawed wing conditions
apply to the mld-semlspan section of wings with
an aspect ratio greater than about five. This

approximation becomes progressively less accurate

as the tip or the root of the wing is approached,
but in most instances It can still provide reason-
able answers. A point to remember about the use

of this approximation with finite aspect ratio
wings is that although the flow may have the
desired characteristics, its llft is always less
than the llft of a wing wlth infinite aspect

ratio. This may lead to problems in comparing
calculations wlth experimental data unless the
aspect ratio or the pressure distribution is also
given. If the pressure distribution is not avail-

able, the given angle of attack may not properly
represent the experimental conditions. Similar

problems may also arise in simulating wind-tunnel
conditions by calculating the corrected incidence
and llft coefficient in free air, because the

trajectories in the two cases may be far from
identical. One solution to the wlnd-tunnel prob-

lem, which may be the only acceptable solution for
a swept wing spanning the tunnel, is to calculate
the flowfleld about the wing in the presence of
the tunnel walls.

The comparisons between the calculated and

experimental ice shapes presented in Subsections

2.1 and 2.2 were obtained for the icing conditions
and angle of attack given in Table I. Care, how-
ever, is required to perform the calculations as

closely as possible to the stated experimental

conditions. Even though the atmospheric icing
condlt_ons are properly defined in the LEWICE
calculations, the angle observed in the wind

tunnel together wlth the wing aspect ratio may



needto be different when the flowfleld calcula-

tions are performed with the panel method for a
free air model.

To investigate this possibility further, we
have calculated the pressure distributions for a
constant chord wing with MS-317 streamwise sec-
tions and with a 30° sweep, having a finite aspect
ratio In free air and spanning the slde walls of

a wind tunnel, using the panel method of Ref. 12.
The free air model was chosen to have an aspect
ratio of 6 in order to reduce the root and tip

effects at the mld-semlspan 1ocatlon. It was

found that the angle of attack of the free-alr
model had to be increased to 4° for the pressure

dlstrlb_tlons to match the experimental data of
Bldwell. measured at 2° angle or attack In the

wlnd tunnel. The 8° angle-of-attack case In Table

l required an increase of 3.5 ° angle of attack in
free alr to obtain satisfactory agreement wlth the

pressure distributions. Since there Is some doubt
about the flowflelds being matched at the widely
differing angles of attack In the wlnd tunnel and
in free air, the flow was calculated about the

wing in the wind tunnel. This requires additional

paneling of the tunnel floor, ceiling and one
sidewall, while taking advantage of one plane of

symmetry. Figure 4 shows the calculated and mea-
sured pressure distributions at _ = 2° in the
wind tunnel compared with results from the calcu-
lations In free alr at _ • 2° and 4°. Agreement

between the experimental data and the calculations
for the wing In the wind tunnel is very good,
considering that the calculated pressure distribu-

tion corresponds to Invlscld pressure distribution
and does not include any viscous effects. As can

be seen, matching of free-air calculations with

1.2

O.B

Cp

0.4

t_

-0,4

-0'81

\o

r _ O.Z 0.4 0.6
CI' xlc
i

Flg. 4. Computed and experimental pressure dls-
tributions for the MS-317 airfoil. __ denotes

results for _ = 2°, free air, --- _ = 4°, free

alr. Symbol o denotes experimental results for
, 2°, wlng tunnel and o denotes calculated

results for a = 2o , wlnd tunnel.

wlnd-tunnel data Is a trial and error process.
Studies are underway to extend these calculations

to include a wing wlth ice. This ts relatively
easy, except for the longer computing times for
the particle trajectories resulting from the large
number of panels used In the calculation of the
Invlscld flowfleld,

3.0 Three-Dimenslonal Interactive Boundary-

Layer Method

A complete description of the three-dlmenslonal
interactive boundary-layer method is described in

Ref. 9 and is presented here for completeness.

As In two-dlmenslonal flows, the interactive
method for three-dlmenslonal flows is based on

the solutions of the Invlscld and boundary-layer

equations. An interface program, illustrated by
Fig. 5, Is placed between the Invlscld and three-

dimensional inverse boundary-layer methods to pro-

cess the geometry and Invlscld velocity data for
input to the boundary-layer program. The basic
input to thls program Is (1) the deflnltlon of the

wlng configuration that Is used by a geometry sub-
routine to construct a nonorthogonal coordinate
system and (2) the associated geometrical param-
eters, which consist of the geodesic curvatures
and metric coefficients needed In the boundary-

layer calculations. Some of the generated data
is used later in a velocity subroutine to deter-
mine the Invlsctd velocity components at the
boundary-layer grld points and to transform the
lnvlscld velocity components on the surface, calc-
ulated In a Cartesian coordinate system, into the
boundary-layer coordinate system. This operation
consists of calculating dot products of velocity
vectors as well as chordwlse and spanwise Interpo_

latlon. Further velocity and geometry data pro-
cessing Is carried out In a subroutine that sepa-

rates the generated information Into upper and
lower surfaces of the wing for boundary-layer
calculations.

INVISCID _ ,,, INTERFACE I I, 3-D INVERSE 'l

METHOD PROGRAM j BLMETHOD I

• | ,o BLOWING ,q

VELOCITY

Flg. 5. The interactive boundary-layer method.

The above procedure Is appropriate to wings
without ice and has been used to compute transonic
flows on wlng/body configurations 18 where, since

the wing leading edge was free of ice, there was
no difficulty in generating solutions near the
attachment line by constructing the nonorthogonal

coordinate system and computing the geometrical
properties of the wing. For a wing with ice, gen-
eration of the boundary-layer solutions near the
leading edge can pose problems since the geodesic
curvatures and metric coefficients must be deter-

mined for an irregular surface. In addition, the
formulation of the interactive boundary-layer

method developed for Iced airfoils must take
account of the three-dlmenslonal nature of the

flow. Thus, it is necessary to make changes in

the strategy for solving the three-dlmenslonal
boundary-layer equations for an iced wing. These
are considered below.



3,1 Boundary-layer Equations

The three-dimensional boundary-layer equations
for a nonorthogonal coordinate system are given
In several references. With Reynolds stresses
modeled by the eddy-viscosity concept, they can
be written as,

a_ (uh2 sine) + a aax _-_ (wh 1 sine) + _ (Vhlh 2 sine) = 0

(1)

hlU axaU + _2 _-_ + v _-_-w au au KlU2COte + K2w2cosece

+ K12uw = _ _osec2e ap + cote cosece ap
ph1 ax ph 2 az

hlU axaW+ h-22_-_+w aw v _-_-aw K2w2cote + KlU2COsece

cote cosece ap cosec2e
* K2lUW - ax - az

Ph I Ph 2

a aw

Here x denotes the coordinate along the lines
formed by the intersection of the wing surface and

planes representing constant percent semlspan; z
Is the coordinate along the constant percent
chordllnes that generate the wing surface, with

chord defined as the maximum length llne between
leading edge and trailing edge. The third coord-
inate y denotes the direction normal to the wing

surface, and the parameter h denotes the metric
coefficients, with e the angle between the
coordinate lines x = const and z = const, for an

orthogonal system, e = _/2. The parameters Kl and

K2 are known as the geodesic curvatures of the
curves z = const and x = const, respectively.
Equations (1) to (3) are subject to the follow-

Ing boundary conditions

y = O, u = O, v = O, w = 0 (4a)

y = 6, u = Ue(X,Z), w = We(X,Z) (ib)

The solution of the above equatlons also

requires initial conditions on two intersecting
planes; those In the (y,z) plane at a specified
chordwlse location are determined from the solu-

tions of the equations discussed In Subsection
4.3. Those on the (x,y) plane, at a specified

spanwlse location z = zo, wlth zo corresponding
to, say, the root location, are determined from

the solutions of the quasl-three-dlmenslonal form
of Eqs. (1) to (3) wlth all derivatives wlth
respect to z neglected, that Is,

___ (uh2slne) + aax _-_ (Vhlh 2 sire) = 0 (5)

u au + v au KlU2COte K2w2cosece
hIax a-y - + + KlUW

cosec2e ap a au

phI ax + _Ty (b_)
(6)

u aw aw K2w2cote KlU2COSeCe
hIax + v _y - + + K21uw

cote cosece n_p_+ _ a aw
" phI ax _ (b_)

())

subject to the same boundary conditions given In
Eq. (4).

3.2 Interaction Law

To account for possible flow separation, as In
two-dlmenslonal flows, we use the interaction law

of Veldman 13 where, for airfoil flows, the edge
velocity is expressed as the sum of an Inv|scid

velocity u_(x) and perturbation velocity 6Ue(X)
due to viscous effects, that is,

Ue(X)= u_(x)+ 6Ue(X) (8)

The perturbation velocity is given by the Hilbert
integral

l iXb d xd__ (9)6Ue(X) - _ _ (Ue6*) _
xa

In the interaction region (Xa, Xb),

To extend thls inverse formulation to three-

dimensional flows, It Is necessary that the two-
dimensional interaction formula given by Eq. (g)
be elther modified to account for the Interactlon

In the x- and z-dlrectlons or be replaced by
another formulation which provides a relationship
between displacement surface and external veloc-

Ity. Here we use the former approach, as des-

cribed In Ref. 14, and first generate an initial
displacement surface by solving the quasi-three-
dimensional boundary-layer equations subject to
the boundary conditions given by Eqs. (4) and (8)

wlth the external velocity distribution u_(x)
obtained from the panel method. The second step
involves interaction between the %nvlscid flow

equations and the quasi-three-dlmenslonal flow
equations. As in two-dlmenslonal flows, the
solutions of the boundary-layer equations are used
to compute distributions of blowing velocity on
the surface, and these allow the Inviscid flow

solutions to be updated. In step three, after the
calculation of the initial conditions in the (y,z)

and (x,y) planes, the fully three-dimensional
boundary-layer equations are solved wlth the

external velocity components resulting from step
two. As before, the spanwise velocity component

is assumed to correspond to its Inviscid value.
The viscous flow solutions are obtained by march-

ing in the spanwise direction at each advancing
chordwise location. This represents the first
phase in an interactive loop that involves the

fully three-dimensional boundary-layer equations.
In the subsequent phases, as before, the blowing
velocity distribution is used to obtain improved
invlscid flow solutions, so the fully three-

dimensional boundary-layer equations are solved
for iced wings as for clean wings in transonic
flow. 14

The viscous effects In the spanwlse component

we are assumed to be second order, although their
neglect Is contrary to the Irrotatlonallty condi-

tion. However, trial calculations involving vari-
atlons of both velocity conditions showed that
errors were smaller than those associated wlth

the convergence of the solutions.



3.3 Transformed Equations

As In two-dlmenslonal flows, we express the

boundary-layer equatlons in transformed variables
for computational purposes. At first, when the

equations are solved for a prescribed external
velocity distribution (standard problem), we use
the Falkner-Skan transformation and a modified

version of this transformation for the inverse

mode. In the former case, the independent vari-
ables are defined by

ue I/2 x

x = x, Z = z, n = (_'_) Y, s = I hldX
0 (lO)

For the dependent variables u, v and w, we intro-

duce a two-component vector potential such that

uh2sine = _ay' WhlSine = _'a@

Vhlh2Sin e = _ (aa__x+ ___)B¢ (ll)

In addition, dimensionless parameters f and g are

defined by

$ : (Uevs)l/2h2slnef(x,z,n)

¢ (UeVS) I/2 Uo: _- hlslneg(x,z,n)
e

(12)

(bf")' + el" + m2(f')2 + m5f'g' + mB(g')2 + roll

af' af' (13)
--mlof' aT + m?g'

(bg")' + eg" + m4f'g' + m3(g')2 + mg(f') 2 + ml2

= mlof, ag' + _ (14)ax mTg' az

, Bf' _ (15)
e = mlf' + m6g' + mlO _ + m7 Bz

The coefficients m1 to m12 are defined in Ref. 9.

In terms of transformed variables, boundary
conditions given by Eq. (4) become

n = O: f = g = f' , g' = O

we

n = ne: f' . I, g' = Uo

(16)

The form of the transformed quasl-three-dlmen-

sional equations Is Identlcai to the form of Eqs.
(13) to (15), except for small differences
discussed in Ref. g.

To solve the equations in the inverse mode, we
define independent variables by

uo I/2 x

x = x, z = z, Y = (_s) y, s = I hldX (17)
0

and relate the vector potentials $ and t to f and

g by

$ - (Uovs)ll2 h2s%nef(x,z,n)

(18)

i = (Uovs)l/2 hlsineg(x,z,n )

and with a prime Bow denotlng differentiation with

respect to Y and ue and we denoting edge velocity

components normalized by reference velocity uo,
Eqs. (1) to (3), with e' defined by Eq. (15) and
m's given in Ref. g, are written as

m5[f'g' UeWe]-_(bf")' + el" + m2[(f')2 - (Oe)2 ] +

aO

+ mB[(g')2 - (Qe)2] , mlo(f' _xf-_' - De a-_)

af' aUe
* m7(g' _ - We az--)

(19)

w

(bg")' + eg" + m3[(g')2 (Qe)2] + m4[f'g' - UeWe]

a_

+ mg [(f')2 - (Ue)2] = mlo(f' aBx-_-- Ue _)

Ge aQe+ mT(g' az - a-z-)

(20)

The transformed boundary conditions for the sys-

tem of Eqs. (19) and (20), wlth ue given by Eq.
(8) and with we corresponding to Its Invlscld
value, are

n = D: f = g = f' = g' = 0 (21a)

n = ne: f' = Ue' g' = We (21b)

The quasl-three-dlmenslonal form of the equa-
tions, which are subject to the boundary condl-
tions given by Eq. (21), are obtained from the

above equations by setting

a_ a_

af_.__'= aq' . e e O and m6 = 0 (22)az az az = az =

To generate the initial conditions near the

leading edge of the iced wing, we use quasl-three-

dimensional boundary-layer equations expressed in
the inverse mode given by

(bf")''+ el" + m2[(f')2 - (Se)2] + ms(f'g' - UeWe)""

aD

+ mB[(g,)2 (_e)2] Bf'- = mlo(f' _ - _e _-_)

(23)

(bg")' + eg" + m3[(g')2 - (_e)2] + m4(f'g' - De,e)

+ mg[(f' ) ag' _ Oe _.e)2 _ (De)2] : mlo(f, ax

(24)

af'
e' = mlf' + mlO a'-_- (25)

The above equations can be further simplified

if we assume that two adjacent defining sections
of a wing are connected by straight llne develop-
ment, as commonly used In the wing design. This



feature simplifies the problem of shaping the
metal for a wing surface. As a consequence, we
can neglect the geodesic curvature of x = constant

ltnes, namely K2, and thus set m3 = m8 _ O. From
the definitions of m4 and m5, it can be seen that
as a result of the above assumption, these two
terms are also small and can be neglected. We

lnvlscld method for each individual strip and
lncluded the contribution of ice protruding beyond
the wing contour and the drag coefficients from
the boundary-layer calculations.

Figure 6 shows the variation of the caiculated
11ft coefficients as a function of angle of

further assume that the local variations in cross attack. Since the primary purpose of the calcu-
sections in the spanwise direction are small, lations was to demonstrate the increase in drag
Examination of the terms m1, m2 and m9 for a typi- due to lce on a tapered wing, the angle of attack
cal wing shows that m2 reaches a value less than range was not extended to stall, which would occur
O.l very close to the leading edge (x/c < 0.01) at relatively high angles of attack for low aspect
and m9 reaches a maxlmum value of 0.2. However, ratio wings. The h_gher lift coefficient than for
their magnitudes rapidly decrease with increasing the clean wing shown for the two iced wings is due
x and reach a very small value at x/c < 0.1. This to the normalization with the wing area of the
behavior allows us to neglect m2 and mg in the clean wing in both cases. The conclusion from
equations and set m1 = 1/2. this figure Is that lift Is not affected by the

rime tce accretion for the angle of attack range
3.4 Solution Procedure considered here because the ice shapes along the

A detalled description of the solutton4proced-
ure will be reported separately. Briefly, the
boundary-layer equations expressed in terms of
transformed variables are solved with Keller's
two-point finite-difference method 15 (box scheme)
with boundary conditions expressed in inverse form
with the interaction law described In Subsection

3.2. Depending on the complexity of the flow-
fteld, two forms of the box scheme are employed.
In regions where all velocity components are pos-
Itive, the regular box scheme is used. In regions
of either a negative spanwlse velocity component
or negative strearr_lse velocity component, the
zlg-zag box scheme described in Ref. 15 is used.

3.5 Performance Degradation of an Iced Taper_

The interactive boundary-layer method of Sec-
tion 3 was used to study the performance degrada-
tlon of an iced wlng having MS-317 airfoil stream-
wise sections, an aspect ratio of 3.43, and a
taper ratio of 0.4. Icing conditions were chosen
to correspond to those In Runs 8 and 11, shown In
Table 1. The pressure distribution on the wlng

leading edge of the wing for runs 8 and 11 do not
cause premature flow separation on the wing.
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Fig. 6. Effect of leadlng-edge 390 and I164 sec-
ond rime Ice on the llft coefficient of a tapered

wlng for R = 4.6 x lO 6 based on root chord.

The calculated drag coefficients shown in Flg.

7 represent the profile drag of the wlng only and
do not represent the total drag, since that

was computed at four locations defined by the requires the contribution of the induced drag.
midsection of each wlng-sectlon with a hundred The profile drag was calculated sectionwise from
panels on each defining airfoil section. The
ice shapes corresponding to this pressure distri-
bution were computed with the method of Section 2
in the middle of each wing section and were used
to distribute Ice along the leading edge of the
tapered wing. The computed ice shapes for a -
2 ° were then assumed to be the same for all angles
of attack on the wing in the investigation of the
performance degradation of the wlng due to ice 0.025
shapes corresponding to the atmospheric conditions

g_ven In Runs 8 and 11. At a specified angle of 0.020
attack, wlth the defined ice shapes along the
leading-edge of the wing, calculations were perL
formed with the method of Section 3; that is, _015

Invlscld flow calculations performed for an Iced CD
wlng were followed by the inverse three- 0.010
dimensional boundary-layer calculations to deter-
mine the blowing velocity distribution to be used

In the incorporation of viscous effects Into the 0.005
Invlsc_d method. The Invlscld flow solutions made

use of four lifting strips, and the viscous flow 0
calculations included boundary-layer calculations

on the wing and in the wake, the latter requiring

the Squlre-Young formula based on the resultant
velocity at the trailing edge. Comparable results
were also obtained from the momentum deficiency
in the far wake. Here we see considerable dlf-

ferences between the clean wing and the two Iced

wings because the Reynolds number is relatively
low (Re = 4.6 x lO° for the root chord) and

1164 SEC ICE/

/

/" 390 SEC ICE

' O:BCL 1.2

velocities at off-body points In the potentlal Fig. 7. Effect of leading edge 390 and l164-second
field. This interactive and Iteratlve procedure rlme Ice on the profile drag coefficient of a
was repeated until the solutions converged. The tapered wlng for Rc = 4.6 x lO6 based on root
llft coefficients were then calculated from the chord.



there are large regions of laminar flow on the
clean wing. The principal contributor to the drag
increase for the iced wing Is the shift in tran-
sition to near the leading edge due to roughness
of the iced surface. The contribution of the
surface roughness itself to the drag Is very small
for Run 8 because the extent of ice is small and
its shape emulates an airfoil leading edge. The
additional drag increase for Run ll results from
the surface roughness spread over a large wetted
area increment. The math conclusion that can be
drawn from these comparisons is that drag incre-
ments obtained between clean and iced airfoils in
wind tunnels depend on transition locations on the
clean wing. If the Run 8 case represents a wing
with transition fixed at the leading edge and the
clean wing case ts transition free, the observed
drag increments from the Run 11 case are quite
different from each other. As a corollary, drag
increments obtained from wind-tunnel tests may be

meaningless without fixing transition or _nowlng
where transition occurs during the tests.

(a)

3.6 R_$ults for an Unswept NACA 0012 Wlng

Bragg eL al. 16 have tested two wings wlth a
simulated ice shape to determine its effect on wlng
aerodynamic characteristics. They also tested the
same wings in clean conditions to establish the (b)
base case. Their measurements include selected
chordwise pressure distributions, balance data on
lift and drag coefficients, and section drag data
by wake measurements. Since these measurements
were conducted in a wind tunnel and our calcula-
tions were to be done for freestream conditions,
at first we decided to perform the calculations for
the clean unswept wing with the interactive method
of Section 3. The tnvlscid code used seven lifting
strips, each with 180 chordwtse panels along the
semtspan.

Figure 8 shows the calculated pressure dtstrl-
butlons for _ 4 degrees together wtth the (c)
experimental res;lts. The overall agreement ls

very good. Also shown are the integrated sectional
llft coefficients which differ somewhat from case
to case, but this is expected from integration of
nonsmooth data. Studies are in progress to evalu-
ate the interactive method for the swept clean wlng

and then apply the method to both unswept and swept
wings wlth tce.

4.0 Cllculatlon 9f lee Shapes on
Multlelement Alrfolls

To extend the method developed for analyzing
iced airfoils and wings to high-lift configura-
tions, our studies first concentrated on the calc-
ulatton of ice shapes on the slat of a four-element
airfoil shown in Fig. 9. Figure 10 shows the
lnvisctd pressure distribution of the clean four-
element airfoil at _ = 0 °. The ice shapes of the
first element corresponding to times up to two
minutes are shown in Fig. 11 for a time step &t
of one minute. With Ice build-up on the first

element, the computed pressure distribution
build- up remains essentially the same except
along the first element. Figure 12 shows the
progression of the pressure distributions of the
first element with time. As can be seen, the ice
accretions cause rapid changes in the pressure
distribution with large leading-edge peaks.
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Cal cul ated Measured Calculated

0.368 0.337 7.36

/

cL Cdwake x 103

Calculated Measured Calculated
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103,
ci C_ake x

Calculated Measured Calculated

0.359 0.301 7.26

Fig. 8. Comparison of calculated (solid lines) and
measured (symbols) results for the unswept clean
wing of Ref. 16 at = = 4°: (a) y/b = 0.168, (b)
y/b = 0.336, (c) y/b = 0.497.
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Fig. 9. Geometry of the four-element airfoil.
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Fig. 10. Pressure distribution for the clean four-
element airfoil at _ = 0 °.
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Fig. ll. Glaze ice shapes on the first element of
the four-element airfoil at c= = 0 °.
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Etg. 15. Pressure distribution for the clean four-
element airfoil at = = 6 °.
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Flg. 12. Pressure dlstrlbutlon along the first
element of the four-element airfoil with glaze ice
accretion at = = 0°.

Very recently, the above method has also been
extended to multlelement airfoils. Figures 13 to
16 show the pressure distributions and the ice

shapes on the first two elements of the four-
element alrfoll at = = 4° and 6°. The ice

shapes correspond to 2 and 5 minutes.

Figures 17 and 18 show the results for the
four-element airfoil at _ = 0° for a two-minute

glaze Ice computed by the multlelement LEWICE code.
Additional studies are in progress and will be

reported later.
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Flg. 13. Pressure dlstrlbutlon for the clean four-
element airfoil at ,, = 4 ° .
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Fig. 14. Glaze Ice shapes on the first two ele-
ments of the four-element airfoil at _ = 4°.
The ice shapes correspond to 2 and 5 mlnutes.
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Fig. 16. Glaze ice shapes on the first two ele-
ments of the four-element airfoil at = = 6°.

lhe ice shapes correspond to 2 and 5 minutes.
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Fig. 17. Pressure distribution for clean and iced
four-element airfoil at _ = 0 °.
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Fig. 18. Computed two-minute glaze tee shapes on
a four-element airfoil at _ = 0 °.

5.0 Concludinq Remarks

Until recently, the only capability for pre-

dlctlng ice shapes on aerodynamic configurations
was limited to single airfoils. With the methods
described here and with the method described in

Ref. 17 for wings, this capability now includes
wings and multlelement airfoils. These methods,

however, are in their infancy and require improve-
ments and validation with experimental data.



The interactive method for three-dlmenslonal

flows also provides a new capability that, except
for the recent work of Ref. 18, did not exist for

Iced wings. Both methods are, also in the early
development stages and require additional work and

validation with experimental data.
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Abstract

The emergence of htgh-llft aerodynamics ts
reviewed as one of the key technologies to the
development of future subsonlc transport aircraft.
Airport congestion, community noise, economic com-
petitiveness, and safety - the drivers that make
hlgh-]_ft an important technology - are discussed.
Attention ts given to the potentially synergistic
Integration of _high-llft aerodynamics w_th two
other advanced technologies: u]tra-high bypass
ratio turbofan engines and hybrid laminar flo_
contro]. A brief revtew of the ongotng high-lift
research program at Ames Research Center ts pre-
sented. Suggestions for future research directions
are made wlth particular emphas_s on the develop-
ment and validation of computational codes and
design methods. It is conc]uded that the techno]-
ogy of hlgh-]tft aerodynamics ana]ysls and deslgn
should move boldly Into the realm of high Reynolds
number, three-d|mensiona] f]ows.
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Abstract

The incompressible, viscous, turbulent flow over single

and multi-element airfoils is numerically simulated in an ef-

ficient manner by solving the incompressible Navier-Stokes

equations. The computer code uses the method of pseudo-

compressibility with an upwind-differencing scheme for the

convective fluxes, and an implicit line-relaxation solution

algorithm. The motivation for this work includes interest

in studying high-lift take-off and landing configurations of

various aircraft. In particular, accurate computation of lift

and drag at various angles of attac.k up to stall is desired.

Two different turbulence models are tested in computing

the flow over an NACA 4412 airfoil; an accurate prediction

of stall is obtained. The approach used for multi-element

airfoils involves the use of multiple zones of structured grids

fitted to each element. Two different approaches are com-

pared; a patched system of grids, and an overlaid Chimera

system of grids. Computational results are presented for

two-element, three-element, and four-element airfoil con-

figurations. Excellent agreement with experimental surface

pressure coefficients is seen. The code converges in less

than 200 iterations, requiring on the order of one minute

of CPU time on a CRAY YMP per element in the airfoil

configuration.

Introduction

An increased understanding of high-lift systems will

play an important role in designing the next generation of

transport aircraft. Current designs for such aircraft typi-

cally involve multiple elements, such as leading edge slats

and multiple-slotted flaps. The current trend is toward a

more efficient, yet simpler design which will lead to reduced

manufacturing and maintenance costs. At the same time,

increases in lift coefficients for a given angle of attack and

increases in maximum lift coeËficient will lead to a larger

payload capability. Improved designs will also allow for re-

duced noise in areas surrounding airports. Understanding

of high-lift flow physics harbors the potential to improve

airport capacity through a reduction of an airplane's wake

vortices, ailov,*ing closer spacing between subsequent air-

planes taking off and landing.

Increased knowledge of the flow physics involved with

high-lift systems is therefore of greater interest than ever

before as the need to improve over current designs be-

comes acute. Study of these configurations will require

both computational and experimental efforts. Computa-

tional fluid dynamics (CFD) is playing a large role in this

work. Multi-element configurations present a number of

challenging problems to the numerical investigators. These

include problems involving turbulent boundary layer sep-

aration, confluent boundary layers and wakes, Reynolds

number effects, three-dimensional effects, compressibility,

effects, transition, and complex geometries. Although the

problems are inherently three-dimensional, there is still

much to be learned about the flow physics by studying two-
dimensional models.

The computational tools available range from the more

effÉcient inviscid/viscous coupled methods, to a Reynolds-

averaged Navier-Stokes (RANS) analysis. An example of

the former method isgiven by Kusunose et al.I They use

a fullpotentialmethod coupled with an integralboundary-

layer method. These methods have been found to be suc-

cessful in accurately computing the pressure distribution

for multi-element airfoils,including cases up to maximum

lift,some of which involveseparation. The coupled method

has been proven to be usefulas an effectiveengineering de-

sign tool. This method islimitedby itsinabilityto compute

beyond maximum liftconditions,and may have problems

with certain features of some airfoilsystems such as flap

wells,thick trailingedges, or unsteady effects.

Navier-Stokes calculations for high-lift systems have

been investigated by a number of authors? -4 Schuster and

Birckelbaw 2 computed the flow over a two-element airfoil

using a structured, compressible, RANS solver. The grid

system used was a pointwise patched system with three

zones, with C-grids around both the main element and

flap, and another outer C-grid surrounding those. Good

results were obtained for low Reynolds number turbulent

flow. The next two authors, Barth: 3 and Mavriplis 4 both

used an unstructured grid approach to handle the difficulty

of discretizing multi-element geometries. They were each

able to produce accurate pressure coefficient information

on the airfoil surfaces. The accuracy of the unstructured

grid approach, however, is limited because of the very large

aspect ratio of the triangular cells required to resolve high

Reynolds number boundary laver flows. Also, this approach

is not well developed for three-dimensional problems. Large

computational resources are required, especially CPU mem-

ory, to make these methods work for viscous flows. Unstruc-

tured methods are currently generating a lot of interest in

the research community; improvements to these limitations

axe to be expected in the near future. Until such a time.

the current authors believe that a structured grid approach

is the most suitable for solving viscous multi-element prob-

lems in two and three dimensions.

The current work uses an incompressible RANS flow

solver to compute the flow over multi-element airfoils. Two

different grid approaches are used; the first approach em-



ploysthepatchedgridsutilizedin Ref. 2, andthesec-
ondusesanoverlaidgridapproachknownastheChimera
scheme,s Thecurrentworkexaminesseveralairfoilflow
problemsintwodimensionsinanefforttocharacterizecur-
rentcapabilityto numericallystudysuchproblems.Grid
topology,computationalefficiency,andresultingaccuracy
areissuestobeexaminedin thecurrentwork.Anincom-
pressibleflowsolverisbeingutilizedbecausetheflowcon-
ditionsfortake-offandlandingwillgenerallybelessthan
aMachnumberof 0.2. In the actual flow, compressibility

effects will generally be confined to a small localized re-

gion, such as near the area of a leading-edge slat. Since the

incompressible Navier-Stokes system has one less equation

than its compressible counterpart, less computing resources

are required.

Algorithm

The current computations are performed using the

INS2D computer code which solving the incompressible

Navier-Stokes equations for steady-state flows _ and for un-

steady computations. 7 This algorithm has also been ap-

plied to problems in three dimensions using the INS3D-UP
code. 8 The code is based on the method of artificial com-

pressibility as developed by Chorin _ in which a pseudo-time

derivative of pressure is added to the continuity equation.

Thus the convective part of the equations form a hyper-

bolic system, which can be iterated in pseudo-time until

a steady-state solution is found. For unsteady problems,

subiterations in pseudo-time are performed for each phys-

ical time step. Since the convective terms of the resulting

equations are hyperbolic, upwind differencing can be ap-

plied to these terms. The current code uses flux-differencing

splitting modeled after the scheme of Roe) ° The upwind

differencing leads to a more diagonally dominant system

than does central differencing and does not require the ad-

ditional _lse of artificial dissipation. The system of equa-

tions is _¢olved using a Gauss-Seidel type line-relaxation

scheme. :r!:_ line-relaxation scheme is very useful for com-

puting rr "-zonal grids because it makes it possible to it-

eratively : .as AQ (which is the change in the dependent

_riables for one time step) information between the zonal

boundaries as the line-relaxation sweeping takes place. The

result is a semi-implicit passing of boundary conditions be-

tween zones, which further enhances the code stability. 11

The resulting code is very robust and stable. It is capable

of producing steady-state solutions to fine-mesh problems

in 100 to 200 iterations. More detail about the computer

code can be found in Refs. 6-8.

Most of the present calculations used the turbulence

model developed by Baldwin and Barth, 12'1a where the

specific formulation found in Ref. !2 was used. This is

a one-equation turbulence model that avoids the need for

an ai_cbraic length scale and is derived from a simplified

for_'_ ,,f the standard k - e model equations. In the current

a_p]ication, the equation is solved using a line-relaxation

procedure similar to that used for the mean-flow equations.

This model has been found to be very robust and easy

to implement for multiple-body configurations. The next

section includes computations of flow over a single airfoil.

One of the studies for this problem includes a comparison

of the Baldwin-Barth turbulence model with the Baldwin-

Lomax 14 algebraic turbulence model.

Computed Results

NACA 4412 Airfoil

Calculations were performed for the flow over an

NACA 4412 airfoil at a ReyngMs number of 1.52 million. A

C-grid with dimensions of 241x63 Was used, with wail spac-

ings on the order of 10, -5 which corresponds to y+ values

on the order oi 0he: The grid was computed Using a hyper-

bolic grid generator, is A close view of this grid is shown in

fig. 1.i. In order to compute flow quantities for the points

on the computational boundary in the "wake cut" line of

the c-mesh, two lines of dummy points are added such that

these dummy points coincide with points on the other side

of the wake line. The first line of these dummy points is up-

dated by injecting _ues from the coincident interior points

on which they lie. Using this overlap produces smooth solu-

tions to the equations across this computational bounda_,.

This procedure also adds dummy points inside the airfoil.

These points are merely blanked out and never used inthe

solution procedure. All of the C-grids in this work use this

overlap.

Fig. 1.1. 241x63 grid used for flow over an NACA
4412 airfoil.

This flow was computed Using two different turbu-

lence models, the Baldwin-Barth model 1_ and the Baldwin-

Lomax model) 4 Figure 1.2 shows a comparison between

these computations and the experimental results of Coles

and Wadcock 16 at an angle of attack of 13.87 degrees, which

is very nearly maximum lift conditions. In the experiment

the flow separated at approximately 85 percent of chord.

Trip-strips were employed in the experiment on the suction

and pressure surfaces at chord locations of x/c of 0.023 and

0.1, respectively. The computations thus specify these as

the transition points. For the Baldwin-Barth model this is

implemented by setting the the production terms to zero

upstream of these locations; for the Baldwin-Lomax model

the eddy viscosity is set to zero upstream of the transition

location. The agreement is fairly good, with the biggest



discrepancy occurring at the trailingedge where the pre-

dicted pressure is too high. However, the Baldwin-Barth

model does give a flatteningof the pressure over the aft

15 percent of chord, indicatingflow separation, where the

Baldwin-Lomax solutiondoes not show thistendency. This

figurealsoshows that the computations with the transition

predict a leading-edge laminar separation bubble. The ex-

periment reports that therewas no laminar separation bub-

ble at this angle of attack, so an additional computation

was run using the Baidwin-Barth model with the produc-

tion terms turned on everywherel thus the boundary layer

was fullyturbulent. The pressure coefficientfor thisisalso

shown in fig. 1.2. There is a slightimprovement in the

trailingedge area for this solution. The Baldwin-Lomax

model showed no differencein the pressure or velocitysolu-

tion when it was run without specifyingtransition,except

that itremoved the laminar separation bubble.
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Fig. 1.2. Pressure coefficient on surface of an
NACA 4412 airfoil at Reynolds number of 1.52 mil-

lion comparing calculations with Baldwin-Barth

and Baldwin-Lomax turbulence models and exper-
imental data.
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Fig. 1.3. Velocity profiles on upper surface of an

NACA 4412 airfoil at streamwise stations of z/c =

0.62_ 0.675, 0.731_ 0.786, 0.842, 0.897, and 0.953.

Velocity profiles from the suction surface boundary

layer are plotted in fig. 1.3 at streamwise stations of x/c =

0.62, 0.675, 0.731, 0.786, 0.842, 0.897, and 0.953. The pro-

files are shown using the streamwise component of velocity

in boundary-layer coordinates, that is, the velocity com-

ponent tangential to the local airfoil surface. This figure

shows in greater detail the problems of the Baldwin-Lomax

solutions in this region: the boundary layer profile is too

full and the solution shows only a tiny region of separation.

The Baldwln-Barth solution is in closer agreement with the

experimental results, but also suffers from too small of a

separation region. The case without transition shows the

best agreement with the experimental profiles.
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Fig. 1.4. Lift coefficient versus angle of attack for
flow over an 1NACA 4412 airfoil.

Computations were run for a range of angles of attack

from zero lift to maximum lift. The lift coefficient versus

angle of attack is plotted in Fig. 1.4. This shows that

the Baldwin-Barth solution with transition gives very good

agreement in the lift, including the prediction of stall. For

all cases, as the angle of maximum lift was approached the

flow tended toward unsteadyness. That is, the steady-star,

computations did not converge completely, which, for tt:.,

artificial compressibility formulation means that the results

do not satisf3" the continuity equation. In these cases the

code was then run in a time-accurate, unsteady mode. For

the Baldwin-Barth model with transition, at an angle of

attack of 14 degrees, the unsteadiness dies out when the

computations are run in a time-accurate mode. At 16 de-

grees, an unsteady periodic behavior ensues; as shown in

the figure, the mean lift drops sharply below the _-ahies

from smaller angles of attack. Examination of the flow

shows that the leading-edge laminar separation bubble is

periodically shedding and traveling through the boundary

layer on the top surface of the airfoil, and past the trail-

ing edge. Figure 1.5 shows the pressure coefficient on the

surface of the airfoil at seven different times through the

period of this flow. The forming of the leading-edge vortex

is evident, and it can be seen that it travels downstream

and past the trailing edge.

For the Baldwin-Barth model without transition at an

angle of attack of 16 degrees, all oscillations damp out and it

converges to a steady-state solution. At 18 degrees, the lift

continues to oscillate periodically, yet there is only a slight



dropinthe lift, and there is a complete absence of a leading-

edge separation bubble. The Balwin-Lomax computations
do not have any type of periodic unsteady behavior with or

without transition. The results from this model show that

a drop in lift does not occur until an angle of attack of 20

degrees.

to the di_cult nature of solving the unsteady incompress-

ible Navier-Stokes equations, it proably would not be com-

putationally cheaper to use an incompressible formulation

over a compressible Navier-Stokes code to study post-stall,

unsteady airfoil flows.
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Fig. 1.5. Pressure coefficient on the surface of the

NACA airfoil at 16 degrees angle of attack for seven

different times during the unsteady periodic mo-

tion.

qn short,the'_ald_n-B_Kmodel Showspromisefor
use in predicting high-lift flows, and although some defi-

ciencies are shown here, it is significantly better than the

Baldwin-Lomax model. In addition, the Baldwin-Berth

model is much easier to use than the Baldwin-Lomax model,

in that is does not require a length scale; it is straightfor-

ward to implement for a multi-element airfoil computation.

All of the results in the later sections of this paper use the

Baldwin-Barth model.

Fig. 1.6. Convergence history showing Maximum

residual versus iteration number for flow over an

NACA 4412 airfoil at 13.87 degrees angle of attack.

Two-Element Airfoil

+The geometry is made up of an NACA 4412 aikfoil with

an NAC A 4415 flap deployed at 21.8 degrees, with the en-

tire configuration at 8:2 degrees angle of attack. This ge-

ometry was studied experimentally by Adair and Home. 17

The chord Reynolds number was 1.8 million, and the Mach

number in the experiment was 0.09. The blockage in the

wind-tunnel was severe enough that the wind-tunnel walls

needed to be included in the calculations in order to get

good agreement with the experimental pressure coefficients.

The convergence history is shown in Fig. 1.6 for the

.=agte of attack of 13.87 degrees for both turbulence mod-

els with and without transition. In general, fast conver-

gence is seen, with converged solutions obtained in 100 to

200 iterations. Specifying the transition tends to produce

an unsteady component into the flow field which some-

what delays the convergence. It can also be seen that the

Baldwin-Lomax computations converge much faster than

the Baldwin-Berth model. The computing time on a Cray

YMP required for this 241 x 63 mesh is 100 seconds for 200

iterations when using the Baldwin-Barth model, 90 seconds
for 200 iterations with the Bald_fin-Lomax model. When

running the unsteady cases, the algorithm requires subiter-

ations at each phy_: 'al time step to drive the divergence of

velocity toward zero. When running the unsteady 16 de-

gree angle of attack case with a non-dimensional time step

of 0.05, 40 physical time steps resulted in one period of the

flow. This took _b:ut 10 minutes of computing time. Due

Fig. 2.1. Three-zone patched grid used to compute
flow over an NACA 4412 airfoil with an NACA 4415

flap.

The airfoils were discretized using two different grid

approaches. The first follows the work of Schuster and



Birckelbaw_anduses3zoneswhicharepatchedtogether
usingcoincidentpoints.Thisgridis shownin Fig. 2.1.
EachoftheelementsissurroundedbyaC-grid,andthese
tw9gridsaresurroundedbyanotherC-gridwhichextends
outtothewind-tunnelwalls.Thedimensionofthesegrids
are374x44,241x33,and352x32,respectively,foratotalof
35,000points.

Fig. 2.2. Overlaid Chimera grid used to compute
flow over an NACA 4412 airfoil with an NACA 4415

flap.

The second type of grid uses a Chimera 5 approach, in

which C-grids were generated about each of the elements.

To include the effects of the wind-tunnel walls these grids

were inset into a third zone composed of an h-grid. A par-

tial view of these three grids is shown at the top of Fig. 2.2,

with a close-up of the main-element grid in the vicinity of

the flap shown in the bottom half of this figure. These grids

had dimensions of 261x49, 203x35, and 121x61, for a to-

tal of 27,500 points. To implement the Chimera approach,

these grids axe given to the PEGSUS 5 code. This code

first punches holes into grids where they overlap a body

(as shown in the bottom of Fig. 2.2). It then computes

the interpolation stencils used to update the flow quanti-

ties at the fringe points of these holes, and to update the

flow quantities at the outer boundaries of grids which lie

inside another grid (like the outer boundaries of the c-grids

seen in the top of Fig. 2.2). For both the Chimera and the

patched grid approaches, the spacing next to the surfaces

was set to 2 x 10 -5, which correspond to y+ values at the

wall on the order of one.

The computational results compare well with the ex-

perimental results of Adair and Home) 7 A plot of the pres-

sure coefficient on the surface of the elements is shown in

Fig. 2.3. Results from both of the grid approaches is shown.

The biggest difference between the computation and exper-

iment is seen in the suction peak at the leading edge of the

flap. The difference might be explained by a difference in

the geometry between the computations and the experi-

ment. There was an ambiguity in the way in which the flap

position is defined.
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Fig. 2.3 Pressure coefficient on surface of two-

element airfoil comparing both patched grid and

overlaid grid schemes to experimental results.
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Fig. 2.4 Convergence history for flow over two-

element airfoil for patched grid and overlaid grid
schemes.

Figure 2.4 shows the convergence history for these com-

putations. They both converge very well, giving a steady-



statesolutionin about 100 iterations. Each of these grid

cases takes about 100 seconds of CPU time on a Cray
YMP for 100 iterations. The code runs at about a rate

of 80 MFLOPS, and requires 36 ×10 -_ CPU seconds per

grid point per iteration. Since the Chimera approach uses

about 20% fewer grid points, it takes a little less comput-

ing time. The major difference between these approaches is

the amount of time and effort it takes to generate the grids.

The patched grid case takes on the order of several hours of

work; it involves generating inner boundaries which define

the surface with the proper point distribution to ensure that

the grids can be patched together. Then hyperbolic grids

are marched halfway across the gap from each of the ele-

ments. The resulting outer boundaries of these are merged

into a common interface where they match. The inner grids

are recalculated to match this interface. Finally, the outer
C-grid is marched outward using a hyperbolic grid gener-

ator. The process is tedious and is not easily repeatable

for a different case (new flap placement, or flap angle), or

for a different geometry. On the other hand, the overlaid

grids can be generated in only a matter of minutes; one

need only generate two independent hyperbolic grids about
each of the elements, and then feed these into the PEGSUS

code 5 as described above. Once this has been set up for

one case it is very easy to reproduce it for another ease or

another geometry. It is for these reasons that the overlaid

grid approach was adopted for the rest of the cases and

geometries in this work.
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Fig. 2.5 Velocity profiles from overlaid grid calcu-

lations compared to experimental data.

Figure 2.5 shows velocity profiles from the Chimera

calculations at three locations on the top surface of the

main element and flap, These are plotted with experimental

measurements of the profiles by Adair and Home. 17 These

plots show fairly good agreement with the experimental

results. The biggest discrepancy is the difference in the

gap velocity off the surface of the flap's leading edge. This

is related to the difference seen in the pressure coefficient

plot in Fig. 2.3. The velocity profile from the trailing

edge of the flap shows that there is a separation occurring
over the top surface of the flap. This profile shows that

the computational separation bubble is not as thick as that

seen in the experiment, but that the computations do an

excellent job of capturing the wake from the main element

in this region.

4.0
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Fig. 2.6 Coefficient of Hft versus angle of attack

as computed by the overlaid grid approach for the
two-element airfoil.

Further calculations were carried out using free-stream

outer boundaries (neglecting wind-tunnel walls). These cal-

culations use the overlaid grids with two zones, where the

main element grid extends beyond ten chord lengths from

the airfoil. These were run at various angles of attack to

show the capability to compute maximum lift conditions as

well as post-stall conditions. The curve of lift coefficient

versus angle of attack is shown in Fig. 2.6. The llft drops

off sharply at alpha = 15 degrees, and the calculations in-

dicate that the flow becomes unsteady beyond that angle

of attack. The skin friction along the surfaces of the airfoil
elements is shown in Fig. 2.7. It can be seen that the flow

separates at the trailing edge of the flap even at zero an-

gle of attack, and that this separation reduces in size with

increasing angle of attack. The main element has trailing

edge separation occurring at angles of attack of 12 degrees

and greater. It becomes massively separated at an angle of

attack of 16 degrees. At this angle of attack the flap shows

evidence of a vortex passing over the top because of the

large dip in the skin friction on the surface of the flap.
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Fig. 2.7 Skin friction on the surface of the main

element and flap for various angles of attack.

Fig. 3.1 Grid and geometry for the three-element

airfoil, showing every other grid point around the

slat and flap.

Fig. 3.2 Velocity magnitude contours at 20.4 de-

grees angle of attack.

Three-Element Airfoil

The three element computational configuration was

taken from an experimental geometry of a supercritical air-

foil which has been tested by Valarezo et al.lS This airfoil

consisted of a leading edge slat deployed at -30 degrees, a

main element, and a trailing edge flap deployed at 30 de-

grees. The experimental Mach number was 0.2 and the

chord Reynolds number was 9 million. The Chimera ap-

proach was used to discretize the geometry and produce a

computational grid. A C-grid was placed around each ele-

ment, with the main-element grid extending out to the far

field. The grids for the slat-, main-, and flap-element had

dimensions of 221x41, 401x75, and 221x47, respectively, for

a total just under 51,000 points. The top of Fig. 3.1 shows

every other grid point in the first and third element grids,

with the resulting holes caused by the main element. The
second half of this figure shows the main element grid. The

wake cut boundary of this grid has been aligned just above

the top surface of the flap element in an attempt to put

as many points as possible in the wake and boundary-layer

region found there.

Figure 3.2 shows velocity magnitude contours of the

three element configuration run at 20.4 degrees angle of at-

tack. The wake of the slat is clearly seen across the top

of the succeeding elements. The experimental results of

Valarezo et al. is and the computational results of this study

are compared in Fig. 3.3. These figures show pressure co-

efficients on the surfaces of each element at three differen_

angles of attack, 8.1, 20.4, and 23.4 degrees. Very good

agreement is seen except on the suction side of the sla_.

Also, there is a discrepancy on the upper surface of the flap

trailing edge. The experimental results show a strong ad-

verse pressure gradient followed by a flattening in the pre__-

sure coefficient curve, which is generally evidence of fiov:

separation. The computational results do not show this.

This is probably due to the general trend of the turbulence

model to underpredict the amount of separation. The ex-

periment allowed free transition on the elements, and the

computations assumed a turbulent boundary layer ever.x--

where. Further work in this area could include use of a

transition model for this calculation.
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Fig. 3.3 Pressure coefficient comparing computa-

tion and experiment for angles of attack of 8.1, 20.4,

and 23.4 degrees.
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Fig. 3.4 Convergence for the three-element airfoil.

Convergence histories of these computations are shown

in Figure 3.4. These computations converge well, with

steady state solutions being obtained after 200 iterations,

which corresponds to about 4 minutes of CPU time on a

Cray YMP.

Fo_-Element Airfoil

The geometry is made up of a NASA 9.3 percent blunt-

based, supercriticai airfoil with a leading edge slat deployed

at -47.2 degrees and two trailing edge flaps at 30 degree and

49.7 degrees respectively. This configuration matches the
geometry used in the experimental work done by Omar et

al)9 The Mach number in the experiment was 0.201 and

the chord Reynolds number was 2.83 million. The geometry

was discretized using the Chimera approach. C-grids were

generated around each of the elements, with the main ele-

ment grid being marched out to the outer boundary. These

grids were overlaid and the PEGSUS s code was used to

create an overlaid grid. Approximately 55,000 points were

used in the resulting composite grid in order to resolve the
flow physics adequately in the boundary layers and wakes.

The grid spacing next to the surfaces of the airfoils was

10 -5 which ensures y+ values of one near the wall.

Fig. 4.1 Velocity magnitude contours at 14.25 de-

grees angle of attack.

T

The computational resultsof thisstudy were compared

with the the experimental resultsof Omar et all9. Figure

4.1 shows velocity magnitude contours around the four el-

ement configuration at 14.95 degrees angle of attack. In

this figure the wake from the leading edge slat is apparent

over the main element. Subsequent wakes from the main

element and flaps can also be observed. Plots of the pres-

sure coefficient on the surfaces of the elements at angles

of attack of 0.0, 8.13, and 14.25 degrees are shown in Fig.

4.2. Again, excellent agreement is seen except there is once

more evidence that the computation of the flow over the

flap underpredicts the amount of separation at the lower

angles of attack.
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Fig. 4.3 Convergence for the four-element airfoil.

The convergence histories for the four element config-

uration at three different angles of attack are shown in Fig.
4.3. The computations converge well and a steady state

solution is produced after about 200 iterations, which cor-
responds to approximately four minutes of CPU time on
the Cray YMP.

Conclusions

An incompressible flow solver has been used to com-
pute flow over several airfoil geometries for the purpose of
developing a tool to study takeoff and landing configura-
tions. The code is robust and produces numerical simu-
lations in a matter of minutes. The flow over an NACA

4412 airfoil was investigated, and the Baldwin-Berth and
Baldwin-Lomax turbulence models were compared. The
Baldwin-Barth model gave significantly better results, and
was much easier to use, particularly for multi-element flows.
The use of the Chimera overlaid grid approach was found

to be much easier than using a patched grid scheme for
solving multiple element airfoil flows. Both approaches are
capable of producing accurate solutions. Accurate pres-
sure prediction was shown for geometries with two, three,
and four airfoil elements. The common discrepancy be-
tween these calculations and experimental results involves
separated flow. The results for the NACA 4412 airfoil in-
dicate that deficiencies with the turbulence model are the

most likely cause of these inaccuracies. Work in progress
with different turbulence models shows promise in remedy-
ing this. Investigation of other turbulence models and their
implementation for a multi-element airfoil calculation will
be the focus of future work. In addition, future work will
include the extension of the current work to three dimen-

sions.
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1. ABSTRACT

The use of unstructured mesh techniques for solving complex
aerodynamic flows is discussed. The principle advantages of
unstructured mesh strategies, as they relate to complex geometries,

adaptive meshing capabilities, and parallel processing are
emphasized. The various aspects required for the efficient and
accurate solution of aerodynamic flows are addressed. These
include mesh generation, mesh adaptivity, solution alguritluns, con-
vergence acceleration and turbulence modeling. Computations of
viscous turbulent two-dimensional flows and inviscid thn_-

dimensional flows about complex configurations are demonstrated.
Remaining obstacles and directions for future research are also out-
lined.

2. INTRODUCTION

Over the last decade, much attention has been devoted to the

development and use of unstructured mesh methodologies within

3. SOLUTION PROCEDURE

In non-dimensional conservative vector form, the Navier-

Stokes equations read

_,v +V.F¢= 1
a-_ _ V.F, (1)

where Re. denotes the overall flow Reynolds number, and w

represents the conserved variables

[°-JpE

p being the fluid density, u, v ,and w the cartesian velocity com-
ponents, and E the internal energy. F, represents the convective

the research community. This enthusiasm however, has not always flux vector, the components of which are algebraic functions of the
conserved variables and the pressure, which itself earl be related tobeen shared by the applications and industrial community. The

promise of easily enabling the diseretization of complex geometries
has been counterbalanced by questions of accuracy and efficiency.
Furthermore, the dearth of results concerning viscous flow calcula-
tions using unstructured meshes has produced skepticism concern-
ing the value of unstructured mesh techniques for practical aero-

dynamic calculations.

There is no doubt that block-structured techniques have

proved extremely effective in discretizing very complex geometries.
However, unstructured grid techniques offer additional inherent
advantages which may not at first appear evident. The possibility of

easily performing adaptive meshing is perhaps the largest advan-
tage of unstructured grid methods. In fact, the implementation of
adaptive meshing techniques for structured meshes has generally
been found to incur unstructured-mesh type overheads [1]. Further-
more, although unstructured grid data-sets are irregular, they are
homogeneous (as opposed to block structured grids where
differentiation between block boundaries and interiors must be

made). One of the consequences of this property is that

unstmctuwd-mesh type solvers are relatively easily palallelizable.

the conserved variables through the perfect gas relation. F, denotes
the viscous flux vector, the components of which are functions of
the first derivatives of the conserved variables. Equation (1)

represents a set of partial differential equations which must be
discretized in space in order to obtain a set of coupled ordinary
differential equations, which can then be integrated in time to

obtain the steady-state solution. Spacial discretization is performed
using a Galerkin finite-element type formulation. The following
derivation is restricted to the two-dimensional case for the sake of
clarity, since the extension from two-dimensions to three-

dimension_ is entirely straight-forward. Multiplying equation (1)

by a test function _, and integrating over physical space yields

_)w dxdy + f_*V.F_ dxdy = _ f_*V.F, did,' (3)

Integrating the flux integrals by parts, and neglecting boundar3 _
terms gives

<,= VF< - ffF..Vl (4)
-fi

While unstructured mesh solvers always incur additional memory In order to evaluate the flux balance equations at a vertex P, ¢) is
and CPU-time overheads due to the random nature of their data- taken as a piecewise linear function which has the value 1 at node
sets, large gains in efficiency can be obtained by careful choices of

data-structures, and by resorting to more efficient implicit or
multi-level solution procedures. When combined with adaptive
meshing and parallelization, these can result in truly competitive

solution procedures.

In the following sections, the application of unstructured

mesh techniques to various aerodynamic flow problems are dis-
cussed. The particular approach chosen (i.e. a vertex based Galer-
kin finite-element discretization with additional artificial dissipation

terms and an unstructured mulfigrid algorithm for convergence

acceleration), represents the methodology adopted over several
years of research by the author, and constitutes but one of several

competing approaches. Both inviscid and viscous flows are con-
sidered, although exclusively steady-state solution procedures are

discussed. Both two and three-dimensional problems are addressed.

P. and vanishes at all other vertices. Therefore, the integrals in the
above equation are non-zero only over triangles (tetrahedra in three

dimensions) which contain the vertex P, thus defining the domain
of influence of node P, as shown in Figure l, for the two-

dimensional case. To evaluate the above integrals, we make use of

the fact that 0, and % are constant over a triangle, and evaluate

spatial derivatives of _ and w over a triangle using vertex values,

by Green's contour integral theorem. The convective fluxes F# are
taken as piecewise linear functions in space, and the viscous fluxes

F, are piecewise constant over each triangle, since they are formed

from first derivatives in the flow variables. Evaluating the flux
integrals with these assumptions, one obtains

illw dxdy = ,=I_"""-"_--.AL_ Re_ = ? ALAn (5)

-I-



where the summations are over all triangles in the domain of
influence, as shown in Figure I. A,o represents the directed (nor-

mal) edge length of the face of each triangle on the outer boundary
of the domain, F_ F,j are the convective fluxes at the two vertices

at either end of this edge, and F.* is the viscous flux in triangle e, e

being a triangle in the domain of influence of ,. If the integral on
the left hand side of equation (5) is evaluated in the same mariner,
the time derivatives become coupled in space. Since we are not

interested in the time-acc_tracy of the scheme, but only in the final
steady-state solution, we employ the concept of a lumped mass

matrix. This is equivalent to assuming w to be constant over the

domain of influence while integrating the left hand side. Hence, we
obtain

n,-fi, E .aLe _ 0F:.ate,)(6)= --T-- Re. _-

where the factorof I/3 isintxoducedby the integrationof 0 over

the domain, and _p representsthe surfaceareaof the domain of

influence of P. For the convective fluxes, this procedure is
equivalent to the vertex finite-voh,me formulation described in

[2,3]. For a smoothly varying regular triangulation, the above for-
mulation is second-order accurate.

Additional artificial dissipation terms arc required to ensure

stability and to capture shocks without producing numerical oscilla-
tions. This is necessary for both inviscid and viscous flow compu-

tations, since in the later case, large regions of the flow-field

behave essentially inviscidly and the physical viscosity is not

sufficient to guarantee numerical stability for the type of mesh
spacings typically employed. Artificial dissipation terms are thus
consmJcted as a blend of a Laplacian and a biharmonlc operator in

the conserved flow variables. The Laplacian term represents a
strong formally first-order accurate dissipation which is turned on

only in the vicinity of a shock, and the biharmonic term represents

a weaker second-order accurate dissipation which is employed in

regions of smooth flow [4.5,6].

The spatially discretized equations are integrated in time to

obtain the steady-state solution. For inviscid flow calculations, a

five-stage Runge-Kutta scheme is employed for the time integra-
tion, where the convective terms are evaluated at each stage in the
time-stepping scheme, and the dissipative terms arc only evaluated

at the first two stages and then frozen for the remaining stages. A
complete multistage time-step, in which the solution is advanced

from time level n to level n+ I, can be written as

W (0) = W"

W(]) = W(0)_ (II_[Q(W(Dg) - D (w(0))]

141(2) = W(0)_ O[2/_/[Q (W(I))- D (w(I))]

w (3) =w(°)-Ot3_,I[Q(wf2))-D(w(I))] (7)

W(""l) = W(5)

with

cq = 1/4 a2 = 1/6 ct3 = 3/8 04 = 1/2 _t5 = l

where w represents the conserved flow variables, Q is the convec-

tive residual, D denotes the dissipative operator, and At represents

the discrete time-step. For viscous flow computations, a variant of

this scheme is employed, where the dissipative terms are evaluated
at the first, third and fifth stages, and frozen at alternate stages.

These particular schemes have been designed to rapidly damp out

high frequency error components [4,5], which is a necessary
characteristic for a multigrid driving scheme. Convergence to

steady-state is accelerated by employing local time-stepping and
implicit residual averaging [2,3,4], which have previously been
described in the context of unstructured meshes.

4. MULTIGRID STRATEGY

The idea of a multigrid strategy is to perform time steps on
coarser meshes to calculate corrections to a solution on a fine
mesh. The advantages of time stepping on coarse meshes are two-
fold: first, the permissible time-step is much larger, since it is pro-
portional to the cell size, and secondly, the work is much less
because of the smaller number of grid points. On the finest grid of

the sequence, the flow variables are updated by the 5-stage scheme
as shown in equations (7). The residuals and flow variables are

then transferred to the next coarser grid. If R' represents the

transferred residuals and w' the transferred flow variables, a forcing
function on the coarse grid can be defined as

i, = R" - R (w') (8)

Now on the coarse grid, time stepping proceeds as shown below:

wt'_=w (q-u- a,_ (R(w('-') + P) (9)

for the q-th stage. In the first stage, w (q-_)reduces to the

transferred flow variable w'. Thus, the calculated residuals on the

coarse grid are canceled by the second term in the forcing function

P, leaving only the R' tenn. This indicates that the driving force

for the solution on the coarse grid is provided by the fine grid resi-
duals. Thus we are ensured that, when the fine grid solution is

fully converged, no further corrections will be generated by the
coarser grids. This procedun_ is repeated on successively coarser
grids. When the coarsest grid is reached, the corrections are

transferred back to the finer grids. The use of a multigrid method

with unstructured meshes presents an additional challenge. Con-

sistent coarse tetrahedral grids can no longer be formed by simply
considering subsetsof the fine grid vertices. An alternative would

be to generate the fine mesh by repeatedly subcfividing an mitiai

coarse mesh in some manner. However, generally poor topological

control of the fine mesh results from such a procedure. Another
approach, known as the agglomeration technique, reconstructs

coarse grids from a given fine unstructured grid by grouping neigh-

boring elements together to form large polyhedral coarse-grid cells

[7,8]. In the present work, it has been decided to pursue an

unstructured multigrid approach in which a sequence of completely

unrelated coarse and fine meshes are employed. This approach pro-

vides great flexibility in determinJng the configuration of the coar-

sest and freest meshes. Coarse meshes may be designed to optim-
ize the speed of convergence, whereas fine meshes may be con-

structed based on solution accuracy considerations. In general,

beginning from a free grid, a coarser level is constructed which

contains roughly half the resolution in each coordinate direction

throughout the domain (about 1/8 the number of vertices in three

dimensions, or 1/4 in two dimensions). This process is repeated

until the coarsest grid capable of representing the geometry topoi-

ogy is obtained. In the context of adaptive meshing, new finer

meshes may be added to the multigrid sequence, using any given

adaptive refinement technique, since no relation is assumed
between the various meshes of the sequence.

The key to the success of such a strategy lies in the ability to
efficiently transfer variables, residuals and corrections back and

forth between unrelated unstructured meshes. In the present con-
text, this is performed using linear interpolation. For each vertex

of a given grid, the tetrahedron which contains this vertex on the

grid to which variables are to be interpolated is determined. The

variable at this node is then linearly distributed to the four vertices

of the enclosing tetrahedron (three vertices of the enclosing triangle

in two dimensions). The main difficulty lies in efficiently deter-
mining the enclosing cell for each grid point. A naive search over

all cells would lead to an O(N r) complexity algorithm, where N is

the total number of grid points, and would be more expensive than

-2-



the flow solution itself. In this work, a graph Waversal _ rou-

tine with best case complexity of O(N) is employed. The search
begins by choosing a node on one grid, and locating the enclosing
tetrahedron on the other grid. This can usually be determined a
priori, for example, by choosing the minimum x-y-z node and the
minimum x-y-z tetrahedron for the respective grids. We next chose

a new node for which the enclosing ceil is to be searched, and this

node is taken as a neighbor of the previous node. As a starting

guess we choose the tetrahedron which was previously found to

enclose the first node, which is in the same vicinity as the new
node. If this cell is not found to enclose the new node, we search

the four neighbors of this cell, and then the neighbors of these

neighbors, thus traversing thrvugh the mesh until the enclosing ceil

is located, at which point the process is repeated for a new node.

The interpolation patterns between the various meshes are
completely determined by assigning to each mesh vertex four inter-
polation addresses and four interpolation weights, which are all

computed in a preprocessing phase. In practice, this preprocessing

has been found to require an amount of CPU time roughly
equivalent to one or two flow solution cycles on the finest grid.

$. ADAPTIVITY

One of the most efficient adaptive mesh enrichment tech-

niques consists of sequential point insertion and local grid restruc-
turing. This can be achieved using Bowyer's algorithm for
Delaunay u'iangulation. A Delaunay triangulation is a unique lri-
angulation (tetrahedrization in 3-D) of a given set of points which
exhibits certain desirable properties (maximizes small angies, pro-
vides a discrete maximum principle for Laplaces equation [9] etc
...). One of these properties, the empty circumcircle property, states
that no vertex from any other triangleRetrahedron can be contained

in the circumcirdedsphere of a given triangle/tetrahedron. This pro-

perty has often been employed as the basis for an algorithm known
as Bowyer's method for the generation of unstructured meshes

[10,11]. Bowyer's algorithm is also useful for adaptive mesh
refinement. Assuming we have discretized the geometry with a
Delaunay triangulation/tetrahedrization, and have solved the flow

on this grid, we seek to refine the mesh in regions of high local
truncation error. The first undivided differences of some key flow
variable (density for example) are examined along every edge of

the mesh. When this difference is larger than some fraction of the
avera,ge differences across all edges of the mesh, a new point is

added midway along that edge. Each new point must be inserted

into the mesh, which must then be locally restructured accordingly.
FoUowing Bowyer's algorithm, we first locate all

triangles/tetrahedra whose circumcircles/spberes are intersected by

this new point. The union of these cells are removed, as this deter-

mines the region of the mesh which must be restructured. A new
structure is then formed by joining the new point to all vertices of

the polygonal/hedral cavity formed by the cell removal operation,

as shown for the two-dimensional case in Figure 2. This has been

proven to result in a consistent Delaunay triangulation provided the

original mesh is a Delaunay construction [11]. In cases where a

non-Delaunay triangulation is employed for the original mesh, a

consistency check must be executed after each new point is
inserted. If negative volume cells are created, the new point must

either be rejecte4, or displaced and reinserted [12]. When new

boundary points are introduced, they are h;positioned onto the ana-
lytic surface-patch definition (or spline curve definition in two

dimensions) of the geometry by recomputing the physical coordi-

nates of the new point based on the assigned parametric patch
coordinates, s and t, which are taken as the average of the

parametric coordinates of the two vertices at either end of the gen-
erating boundary edge.

6. TWO-DIMENSIONAL RESULTS

6.1. An Inviscid Case

In order to illustrate the effectiveness of the simultaneous use
of adaptive meshing and the multigrid strategy, the inviscid flow
through a two-dimensional turbine blade cascade geometry has

been computed. The particular blade geometry has been the subject
of an experimental and computationalinvestigation at the occasion
of a VKI lecture series [13]. A total of seven meshes were used in

themultigridalgorithm,withthe lastthreemeshes generatedadap-
tivciy,using the undivideddensitydifferencecriterion.The coar-

sestmesh of thesequence containsonly51 points,whilethe finest

mesh, depictedin Figure 3, contains9362 points.Extensivemesh

refinementcan be seento occurintheneighborhoodof shocks,and

in otherregionsof high gradients.The inletflowincidenceis30

degrees,and the average inletMach number is 0.27.The flow is

turned 96 degrees by the blades, and the average exit isentmpic

Mach number is 1.3. At these conditions, the flow becomes super-
sonic as it passes flm3ugh the cascade, and a complex oblique
shock wave pattern is formed. These are evident from the com-

puted Mach contours depicted in Figure 4. All shocks are well
resolved, including some of the weaker reflected shocks, which

non-adapted mesh computations often have difficulty resolving.

Details of the flow in the rounded trailing edge region of the blade,
where the flow separates inviscidiy and forms a small recirculation
region, are also well reproduced. Once the first four globally gen-

erated meshes were constructed, the entire flow solution - adaptive

mesh enrichmentcycle was performed three times,executing25

multigridcycles at each stage.This entireoperationrequired40

CPU secondson a singleprocessorof a Cray-YMP supercomputer.

The residualson the finestmesh were reducedby two and a half

ordersof magnitude, which should be adequatefor engineering
calculations.

6.2. Viscous Flows

While the discretizatinn of the viscous terms for the Navier-

Stokes equations as outlined in Section 2 is relatively straight-

forward, the main difficulties involved in computing high-

Reynolds-number viscous flows relate to the grid generation and

turbulence modeling requirements. In order to efficiently resolve

the thin viscous layers encountered in Such flows, highly stretched
grids with very high resolution in the direction normal to the flow

must be employed. Standard unstructured grid generation tech-

niques (i.e. advancing front methods [14,15], or Delaunay triangu-
lations [11,16]) generally break down when attempting to generate

such highly stretched grids (normal to streamwise resolution ratios

of 100 to 1000 are typically required). The procedure adopted in

this work is to employ one of these standard techniques ( in this

case, the Delaunay construction) in a locally mapped space, as
opposed to physical space [17]. A suitable mesh-point distribution

with the required normal and streamwise resolution must first be

obtained. This is achieved by generating a structured hyperbolic

mesh about each geometry component, and employing the union of

the points of these overlapping local structured meshes as the basis
of a Delaunay triangulation. However, a Delaunay triangulation of

a given set of points tends to produce the most equiangular trian-

gles possible, and therefore in genera], is not well suited for the

generation of highly stretched mesh elements. Thus, an alternate
triangulation procedure must be employed. The approach taken

consists of defining a stretching vector (stretching magnitude and

direction) at each node of the initial point distribution throughout

the flow field. Assuming an initial triangulation has been obtained,

when a new mesh point is to be inserted, the associated stretching

vector is employed to construct a locally mapped space such that,
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within this mapped space, the local point disuitmtion appea_ iso-
tropic. A Dclaunay triangulation is then performed to wiangulate

the new point into the mesh in this mapped space, and the resulting

triangulation is mapped back into physical space, thus rcsul_g in
the desi_d stretched triangulation. Hence, a fully unstructtm_

mesh with highly stretched elements in the boundary layer and
wake regions, nearly equilateral triangles in the inviscid regions of
flow, and a smooth variation of elements throughout the wansition

regions is obtained. The use of fully unstructured meshes for
viscous flow calculations has been pursued, as opposed to the
hybrid sm_ctured-_cmred meshes often advocated in the litera-

ture [18,19], due to the increased generality they afford in dealing

with geometries with close tolerances between neighboring bodies,

where confluent boundary layers may occur, and due to the ease

with which adaptive meshing may be incorporated throughout the
viscous and inviscid regions of flow.

The use of a turbulence model is required for the practical

solution of high-Reynolds number viscous flows. The most com-
mon turbulence models employed for aerodynamic flows arc of lim

algebraic type. Such models typically require information _-

ing the distance of each point from the wall. Turlmlence length
scales arc determined by scanning appropriate flow variables along
specified streamwise stations. In the context of unstructured

meshes, such information is not readily available and hence, the
implementation of algebraic turbulence models on such meshes

introduces additional complexities. The approach adopted in this
work [20] consists of generating a set of background turbulence
mesh stations. These are constructed by generating a hyperbolic

structured mesh about each geometry component, based on the
boundary-point distribution of the original unstructur_ mesh. and
extracting the normal lines of the mesh. When performing adap-
tive meshing, new turbulence mesh stations must be consuucted for

each new adaptively generated boundary point, as illustrated in Fig-
ure 5. Each lime the turbulence model is executed, the flow vari-
ables are interpolated onto the normal turbulence stations, the tur-

bulence model is executed on each station, and the resulting eddy

viscosity is interpolated back to the unsu'uctured mesh. The

method employed for interpolating variables back and forth
between the unstructured mesh and the turbulence mesh stations is

similar to that previously described for the unstructured multigrid
algorithm.

Figures 6 through 9 illustrate a calculation which makes use
of these various techniques to compute a complicated _vo-

dimensional viscous flow over a high-lift multi-clement airfoil.
The final mesh employed is depicted in Figure 6, and contains a
total of 48,691 points. This mesh was obtained using the stretched
Dclaunay triangulation technique previously described, followed by
two levels of adaptive refinement. The height of the smallest ceils

atthe wallisof the orderof 2 z I0-5chordsand cellaspectratios
up to 500:1 are observed.The computed Mach number contours

for thiscase are depictedin Figure 7. The freestreamMach

number is 0.1995,the chord Reynolds number is 1.187 million,

and the correctedincidenceis 16.02degrees. At theseconditions,

the flow remains entirelysubcritical.Compressibilityeffectsa_

nevertheless important due to the large suction peaks generated

about each airfoil. For example, in the suction peak on the upper

surface of the leading-edge slat, the local Mach number achieves a

value of 0.77. The computed surface pressure coefficients are
compared with experimental wind tunnel data [21] in Figure 8, and
good overall agreement is observed, including the prediction of the

height of the suction peaks. This case provides a good illustration

of the importance of adaptivemeshing in practicalaerodynamic

calculations.Adequate resolutionof thestrongsuctionpeak on the
upper surfaceof the slatcan ordy be achieved with a very fine

mesh resolutionin thisregion.Failureto adequatelycapturethis

largesuctionpeak resultsin the generationof numericalentropy
which isthenconvecteddownstream,thuscontaminatingthe solu-

lionin the downsueam regions,and degenera_g the globalaccu-

racyof the solution.Because thesesuctionpeaks arc very local-

ized,they are efficientlyresolvedwith adaptivetechniques.In

orderto obtaina similarresolutionusingglobalmesh refinement,

of the order of 200,000 mesh pointswould be required,greatly

increasingthe costof the computation. The convergencehistory

forthiscase,as measured by thedensityresidualsand the totalrift

coefficientversusthe number of multigridcycles,is depictedin
Figure9. A totalof 400 multigridcycleswcrc executed,which

requiredmughiy 35 minutesof singleprocessorCRAY-YMP time,

and 14 Mwords of memory.

The discrepancybetween the computed and experimental

pressurecoefficientson the trailingedge flapisduc to a separated
flowconditionwhich isnot reproducedby thealgebraicturbulence

model. Figure 10 compares computed and experimentallift

coefficientsatvariousanglesof attackfora three--clementhigh-lift

airfoil[22].The failureof the computationsto predictthe max-

imum lift point are directly attributable to the inability of the tur-
bulence model to predict the onset of separation. These results
strongly indicate the need for more sophisticated turbulence model-
ing. The use of single or multiple field-equation models appears to
be the most appropriate choice for turbulent unstructured mesh

computations. Such models can be discretized in a straight-forward
manner on unstructured meshes. However, the task is now to

ensure that such models adequately represent the flow physics, and
that they can he solved in an efficient and robust manner. In this

work. the implementation of a standard high-Reynolds-number
t- e turbulence model with low-Reynolds-number modifications

proposed by Speziale, Ahid and Anderson [23], has been pursued.
The main effort was focused on devising a technique for efficiently
solving the two turbulence equations in the context of the uns_c-

tumd multigrid strategy [24]. The four flow equations and the two

turbulence equations are solved as a loosely coupled system. The
flow equations are solved explicitly, and the turbulence equalions

point-implicitly, using a time-step limit which ensures stability and

positivity of k and t. In the context of the unstructured multigrid
algorithm,theturbulenceeddy viscosityisassumed constanton all

but the finestgridlevelwhere itisrecomputed ateach time-step.
The transonicflow over a two-clement airfoilconfigurationhas

been computed using thisimplementationof the mndcl. For this
case,the freestreamMach number is 0.5, the incidenceis 7.5

degrees,and the Reynolds numher is4.5 million.FiguresII and
12 depictthe mesh and the solutionobtainedwith the current

implementationof the k - _ turbulencemodel. Four meshes were

employed in the muhigrid sequence,with the fnestmesh contain-

ing a totalof 28,871 points.The convergenceratesof the various

equationsfor thiscase arc plottedin Figure 13. As can bc seen,

the turbulenceequationsand flow equationsconverge at approxi-
matelythesame rates.The computed flowfieldexhibitsregionsof

transonicflowwith a smallregionof separatedflowat thefootof

theshock.Thcsc featuresappearto be wellreproducedby the tur-

bulencemodel. Futureeffortswillconcentrateon computational]y
predictingflows with largeregions of separation,such as that

inferredby Figure 8, and on modifying thc model to better

representtheflowphysics.

7. THREE DIMENSIONAL RESULTS

Due to the limitations of present day supercomputers, and the
difficulties associated with generating highly stretched teu'ahedral

meshes, three-dimensionalcomputations havc presentlybeen

confinedto inviscidflows. The teclmiquesdescribedinthecontext
of two-dimensionalinviscidflows extend readilyto _ dimen-

sions. In particular, the unstructured multigrid algorithmand the
adaptive meshing strategy have been found to be particular

effectivefor three-dimensionalcomputations [12].As an example,
an adaptive multigridcalculationof transonicflow about an

ONERA M6 wing is illustrated in Figures 14 through 16. The
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finalmesh. depicted in Figure 14, contains a total of 174A12
points and just over 1 million tetral_ral volumes. This represents

the fourthmesh in themuldgrid sequenceand the second adaptive

refinementlevelMesh refinementwas basedon theundividedgra-
dientof density.The frees'u-earnMach number and incidencefor

this case are 0.84 and 3.06 degrees respectively. The well known

double shock patternfor thiscase isreproducedin the computed

Mach contou_ of the solutionin Figure 15. The leadingedge
expansionand shocks are weU resolveddue to theextensivemesh

refinementintheseregions.A globallyrefinedmesh ofthisresohi-

tion would result in roughly 600,000 points and would thus re.quire
3 to 4 times more computational resources. The multigrid conver:

gence rate for this case is depicted in Figure 16, where 50 cycles

were performed on the original grid, prior to adaptation, 50 cycles

on the first adapted mesh, and "100 cycles on the finest adapted

mesh. On this final mesh, the residuals were reduced by 5 orders
of magnitude over 100 cycles, requiring a total of 35 CRAY-YMP

single CPU minutes and 22 MW of memory.

7.1. Parallel Computing Results

As mentioned previously, due to their homogeneous (although

random) natu_, unstructured mesh data-sets are particularly well

suited for parallel processing. An unstructured mesh solver typi-
cally consists of a single (indirect addressed) loop over all interior
mesh elemems, and another similar loop over all boundary ele-

ments. On a vector machine, each loop may be split into groups
(colors) such that within each group, no recurrences occur. Each

group can then be vectorized. A simple paraUelizadon strategy for
a shared memory machine is to fur, her split each group into n sub-

groups, where n is the number of available processors. Each sub-

group can then he vectorized and nan in parallel on its associated

processor. Because the original number of groups is not large
(usually 20 to 30), the vector lengths within each subgroup are still

long enough to obtain the full vector speedup of the machine, for a

moderate number of processors. For more massively parallel

distributed-memory scalar machines, the entire mesh must be sub-

divided and each resulting partition associated with a single proces-

sor. On each processor, the single scalar interior and boundary
loops are then executed, with inter-processor communicafinn occur-

ring at the beginning and end of each loop. The mesh partitioning

strategy must ensure good load halancing on all processors while

minimizing the amount of inter-processor communication required.

7.2. CRAY-YMP-8 Results

Figure 17 illustrates an unstructured mesh generated over a

three-dimensional aircraft configuration. This mesh contains a total

of 106,064 points and 575,986 tetrahedra. This represents the

second finest mesh employed in the multigrid sequence. The finest

mesh, which is not shown due to printing re.solution limitations,
contains a total of 804,056 points and approximately 4.5 million

tctrahedr',L This is believed to be the largest unstructured grid prob-
lem attempted to date. The inviscid flow was solved on this mesh
using all eight processors running in parallel on the CRAY-YMP
supercomputer. A total of 4 meshes were used in the multigrid

sequence. Thc convergence rate for this case is dcpicted in Figure
19. In 100 multigrid cycles, the residuals were reduced by almost 6

ordcrs of magnitude. This run required a total of 16 minutes wall
clock time running in dedicated mode on the 8 processor CRAY-
YMP, including the time to read in all the grid files, write out the
solution, and monitor the convergence by summing and printing
out the average residual throughout the flow field at each multigrid

cycle. The total memory requirements for this job were 94 million

words. The ratio of CPU time to wall clock time was 7.7 on 8 pro-
cessors, and the average speed of calculation was 750 Mflops, as
measured by the CRAY hardware performance monitor [25]. For
this case, the freestream Mach number is 0.768 and the incidence

is 1.116 degrees. The computed Mach contours are shown in Fig-

ure 18, where good resolution of the shock on the wing is

observed, due to the large number of mesh points employed.
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7.3. Intel IPSC 860 Results

The implementation of the unstructured multigrid Euler solver

on the Intel iPSC 860 distributed memory scalar mulliprocessor

machine, has been pursued using a set of software primitives

designed to ease the porting of scientific codes to parallel machines
[26]. The present implementation was undertaken as part of a

more general project aimed at designing and constructing such

primitives with experience gained from various implementations,

The net effect of the use of such primitives is to relieve the pro-

grammer of most of the low level machine dependent software pro-
gramming rusks. The mesh was partitioned using a spectral panion-

ing algorithm which had previously been shown to produce good
load balancing and minimize inter-processor communication [271.

At present, the partitioning of the mesh is done in a preprocessing
stage on a sequential machine. At the time of writing, the fine air-
craft mesh (804,056 vertices) has not been run on the Intel

machine. Thus, results with coarser meshes are quoted. Table I
gives an overview of the results obtained to date. A small 3600

point mesh was found to nan at about 4.1 Mflops on a single Intel
iPSC 860 processor. The largest case tried to date, a 210,000 point

mesh, resulted in a 144 Mflop rate on 64 processors, which
represents an efficiency of about 55% percent, based on the single
processor results. It is anticipated that the fine 804,056 point grid,
when implemented on 512 processors, will achieve an equivalent or
greater computational speed than that observed with the full
CRAY-YMP 8-processor machine.

8. CONCLUSION

This paper has illustrated the application of unstructured mesh

techniques to various types of aerodynamic flows, and emphasized

the advantages which can be obtained for complex geometries

using adaptive meshing and parallelization. In two dimensions, a
viscous flow solution capability has been demonstrated, while in

thn_ dimensions, efficient Euler solutions are possible. The main
problems associated with three-dimensional viscous solutions are

related to the development of reliable grid generation strategies,
particularly with regards to the generation of highly, stretched

tetrahedral elements for capturing thin viscous layers. Turbulence

modeling is also a limiting factor, although this difficulty is not

particular to the field of unstructured meshes. Future work should

also concentrate on more complete parallelization of the entire

solution process, including items such as grid generation, partition-
ing, and adaptive meshing.
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Figure 1: Domain of Influence of Finite-Element Basis Function and
Equivalent Finite-Volume Conm3] Volume
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Figure 2: musmuJon of Bowyer's Algorithm for Delaunay Triangulation

Figure 3: Adaptive Mesh Employed for Computing Transonic Inviscid

Flow Thn3ugh a PeriodicTurbine Blade Cascade Geometry; Number of
Nodes = 9362
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Figure 4: Computed Mach Contours for Flow Through a Periodic Tur-
bine Blade Cascade Oeome_-y

Figure $: Illustration of Turbulence Mesh Stations Employed in Alge-
braic Model for an Adaptively G-cneratedMesh
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Figure 6: Adaptively C_.metal_ Unsuucmred Mesh about Four-Element

Airfoil; Number of Nodes = 48,691
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Figure 8: Comparison of Computed Surface Pressure Distribution with

Experimental Wind-Tunnel Data for Flow Oyez Four-Element Airfoi]

Configuration; Math = 0.1995, Reynolds Number = 1.187 million,

Incidence ffi 16.02 degxees

Figure 7: Computed Mach Comotrs for Flow over Four-Element Airfoil;
Mach= 0,1995, Reynolds Number = 1.187 million, Incidence = 16.02
degrees
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Figure 9: Convergence as Measured by the Computed Lift Coefficient

and the Density Residuals Versus the Number of Muhigrid Cycles for
Row Past a Four-Element Airfoil

-9-



C L

4.5

k4.0

3.5

3.0

2.5

2.0

0 25

' I ' I ' I ..... _ I

o NS72 _ o

i_-- LTPT ExperimentJ S ° \

, I . I J ....I _ I

5 10 15 20

Figure 10: Comparison of Computed and Experimen_ Lift Coefficients
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Figure 12: Computed Mach ContoursUsing Low-ReynoldsNumber
Modificationfor TurbulenceEquationsfor Super_iticalFlow overa
Two-Element Airfoil(Mach = 0.5,Re = 4.5 million,Incidence= 7.5

degrees)
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Figure 11: Global View of Coarse Unsu'ucmred Mesh and Close-Up
View of Fine Unstructured Mesh Employed for Computing Flow Past a Figure 13: Multigrid Convergence Rate of the Density Equation and the

Two-Element Airfoil (Coarse Mesh Points = 7272, Fine Mesh Points = Two Turbulence Equations Using Low-Reyn0lds Number Modifications
28871) for Flow Over Two-Element Airfoil (Mach= 0.5, Re - 4.5 million,

Incidence -- 7.5 degrees)
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Figure 14: Finest Adapted Mesh Generated About ONERA M6 Wing

(Number of Nodes ,, 173A12 Number of Tetrehedra ,, 1,013,718)

Figure 15: Computed Mach Contours on the Adaptively Generated Mesh

About the ONERA M6 Wing (Mach = 0.84, Incidence = 3.06 degrees)

Figure 17: Coarse Unsu'ucuacd Mesh about an Aircraft Configtradon

with Single Nacelle; Number of Points ,, 106.064, Number of Tetrahedra
•_ 575,986 ('Finest Mesh Not Shown')

Figure 18: Mach Contours for Flow over AircraftConfigurationCom-

pu_d on Fine Mesh of 804,056 Vextices and 4.5 million TetraheAra

(Mach = 0.768,Incidence = l.II6degrees)
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Figure 16: Convergence Rate of the Unstructured Mulrigrid Algorithm
on the Adaptively Generated Sequence of Meshes about the ONERA M6

Wing as Measured by the Average Density Residuals Versus the Number
of Multigrid Cycles
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Figure 19: Mulfigrid Convergence Rate on Finest Mesh of the Multigrid
Sequence for Transonic Flow over Aircraft-with-Nacelle Configuration



Size

Mesh

3600

26K

210K

Number of Processors

Mflops

comp/iter(s)

1 2 8

4.1 7.1

4.6 2.4

comm/iter(s) - 0.25

Mflops - -

comp/iter(s) - -

comm/iter(s) - -

Mfiops - -

comp/iter(_ - -

comm/iter(s) [ - _

16

16.9 17.4

0.6 0.34

0.48 0.73

23.8 38.8

4.5 2.3

1.1 1.1

64

144.3

4.75

2.3

Table 1: Ob_ _ _._, -.6onal Rates and TLmings per Iteration of

Computafic _" _,_' _ i Communication Overhead for Various Sizes of
U_m_cmrcd Meshes on Imel fi_3_
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AN INTERACTIVE BOUNDARY-LAYER APPROACH.TO HULTIELEMENT AIRFOILS AT HIGH LIFT /_ //c,_,/

Tuncer Cebeci*

Aerospace Engineering Department
California _tate University, Long Beach

Abstract

A calculation method based on an interactive

boundary-layer approach to multielement alrfolls
Is described and ls applied to three types of alr-
foil configurations wlth and without flap-wells tn
order to demonstrate the applicability of the
method to general high-lift configurations. This
method, well tested for single airfoils as a func-
tion of shape, angle of attack and Reynolds number,
ts here shown to apply equally well to two-element
airfoils and their wakes, to a flap-well Lregion,
and to a three-element arrangement which includes
the effects of co-flowing regions, a flap well, and
the wake of the elements. In addition to providing
accurate representation of these flows, the method
ls general so that its extension to three-
dimensional arrangements ls likely to provide a
practical, accurate and efficient tool to assist
the design process.

1.0 Introduction

The design of multielement airfoils for hlgh
llft requires consideration of a range of configu-
rations so that care must be taken to ensure that
the essential experiments and calculations can be
undertaken with acceptable cost as well as accu-

racy.1,2 We are concerned here with the devel-
opment of a calculatlon method which meets this

requirement and is able to represent the flow over
and between the individual airfolls with consider-

ation of flap wells and wakes. These requirements

imply the need for a method which has an economical
and accurate numerical solution procedure; a flex-

Ible turbulence model to represent wall boundary
layers, wall jets and wakes, and the wake of the
last element; and the ability to represent the

separated flows associated with the upper surface
and the flap well. In addltlon, the preferred pro-
cedure should be readily extendible to deal with
three-dimensional components such as wings and

empennage.

In recent years there has been a renewed inter-

est in experimental work on hlgh-llft systems.

Extenslv_ measurements have been reported by
Nakayama _, Alemd_roglu summarized by Nakayama _, and
Valarezo et al. _ The data of Nakayama are for a

three-element airfoil wlth a leadlng-edge slat and
for a single-segment flap; they were obtained at

NASA Langley's Low Turbulence Pressure Tunnel
(LTPT). Those of Alemdaroglu are essentially for
the same but smaller model and were obtained at the

low-speed wind tunnel of Californ_a State Univer-

slty, Long Beach. The data of Valarezo et al. were
also obtained at NASA Langley's LTPT and correspond

to measurements at high Reynolds numbers. These
data add to the previously obtained data on multi-

element aITfoils by van den Berg, 6 van den _{B
and Dskam', Oskam et al.°, Omar et al.

and Olson and Orloff II which allow the validation

of computer programs to analyze high-llft systems.

Several alrfoll-analysis and deslgn algorithms

have been developed in the last decade and have
been based on one of two approaches: numerical
solutions of the Reynolds-averaged Navier-Stokes

equations or solutions of the interaction between
inviscld and boundary-layer equations. The former

approach involves the numerical solution of ellip-
tic equations so that information travels in all

directions through pressure, velocity and viscous
and turbulent stress gradients. As a result, the
solution method requires simultaneous processing
of the pressure and velocity components and stress
tensor throughout the flowfield and this, In turn,
implies a trade-off between accuracy and cost which
tends to limlt the validity of this approach. This
limitation is a function of computers and program-
ming methods, and these are likely to improve with
time so that solutions of the Navier-Stokes equa-
tions, with proper consideration of momentum con-
servation in two directions together with longitud-
inal diffusion, are likely to be a major component
of design methods of the future. The combination
of the largest mainframe computers and unstructured
and multigrld techniques has already been shown _o
be very powerful as, for example, by Mavrlplis _,
Rogers et at. _J, and Barth. 14

The present approach is based on the interac-
tive boundary-layer approach whlch has been tested

extensively for slngle-element airfoils, as des-
cribed for example In References 15 to 17. These
papers have shown that this approach can represent

accurately, and wlth low cost, the flows around a
number of airfoil geometries, with angles of attack

up to and beyond that of stall, and including re-
gions of separated flow which may cause transition
from lamlnar flow. It is based on solutions of

%nvlscid and boundary-layer equations with a sur-
face and wake blowing velocity obtained from the
Hllbert integral and ensuring interaction between
the calculated Invlscld and viscous flows. It has

also been shown that, In extended form, it is able
to reoresent the three-dlmensional flows over

wlngs 18 and, therefore, meets many of the require-

ments for a design method as dlscussed above.

It should be emphasized that alternative inter-

actlve p_thods have _e_ reported, for example by
Veldman _, LeBall_r _u,_', Williams and Smith zZ,
Orela a_d G11es (°, and Kusunose, Wigton and
Meredith. (_ The last of these deserves further
research in the context of this paper since it has

been reported recently and has been applied to
multlelement airfoils. It uses a fin%te-element

full-potential code to compute the outer flow wlth

a modified streamline H-grld, and solves the

boundary-layer equations in integral form wl_b
modeling similar to that of Bradshaw and Ferrls. _b

*Professor and Chairman.



The results encompass single, two- and three-
element airfoils at angles of attack up to around

13 degrees and are _n close agreement wlth mea-
surements. It is also evident that the method ls
cost efficient and Is already part of a design
method. It can be expected, however, that the
turbulence model wtll be less successful where

pressure gradients are severe and will not cope
well with inter-element flows where there Is a
distinct velocity maximum. In addition, and per-
haps of greatest importance, attempts to extend
integral boundary-layer methods to three-
dimensional flows have not been successful.

This paper Is concerned wtth the extension of
the interactive boundary-layer method of Refs. t5
to 17 to represent multtelement airfoils where the
flows between airfoils, flap wells and the possible
influence of the overall wake In all elements are
new features. The computational investigation was
carried out In three parts which are reflected In
the presentation of results and correspond to two-
element airfoils with emphasis on the flow between
elements and the wake, a single-element atrfotl
wtth a flap well where the calculation of the flow
In the flap well is the major novelty, and the
combination of these features In three-element
airfoils which involve a flap well. This results
section ls preceded by descriptions of the inter-
active and solution procedures and followed by
concluding remarks.

2.0 Interactive Boundary-Layer Me_hod

The interactive boundary-layer method makes use
of the panel method of Hess and Smlth 26 and a
solution of the boundary-layer equations tn which
the turbulence model is given by the algebraic edd_
viscosity (cm) formulation of Cebect and Smith. z/
With b denoting 1 + Cm/V, the continuity and
momentum equations can be written as

8_uu+ av
ax _-_ = 0 (1)

au au dUe a au
u_+v_=u e_+_(b_) (2)

In the absence of mass transfer, the boundary con-

dltlons for the above equations on the airfoil are:

u = v = O, y = 0 (3a)

U _ Ue(X), y _ = (3b)

and in the wake, where a dividing llne at y = 0 Is

required to separate the upper and lower parts of
the Invlscld flow and in the absence of the normal

pressure gradient, they are:

y _ ±®, u _ Ue(X); y = O, v = 0 (4)

2.1 Interactlon Law

To perform the calculations for flows wlth

separation, }t Is necessary to use an inverse

procedure and compute the external velocity as
part oF the solution. Here we use the formulation
discussed in Ref. 15 and write the edge boundary

condition as

Ue(X)= u_(x)+ 6Ue(X) (Sa)

wlth _Ue(X) computed from the Hilbert integral

1Xb _o do (5b)! (Ue6*) x - o
aUe(X) - _ x a

This inverse boundary-layer formulation ts appro-
priate to airfoils and to those parts of airfoils
without surface discontinuities such as flap wells.
Where flap wells occur, a different formulation of
the inverse procedure ts required, and the formula-
tion used here ts described below.

The calculatlon of the flow In the flap-well

region Is slmllar to that over a backward-faclng
step. A large portion of the flow separates
immediately after the sudden change of the geom-
etry, and the slze of the reversed-fl6w regioh

depends malnly on the step height, on the gap, and
the overhang. The flow reattaches and gradually
recovers downstream in the flap-well region or In
the wake. The calculation of flows of thls klnd

Is difficult, and potential theory Is not adequate
because of the singularity that occurs at the

geometry discontinuity and the strong viscous
effects In the separated flowfleld. Thus, an
initial distribution of displacement thickness Is
assumed and the relaxation formula

(6,)v+l (_,)v [I "Uev- I)] (6)
= + _ _UeI

ls used tn the inverse method to replace the
Hllbert integral formulation of the external
boundary condition. The new edge boundary condi-
tions are given by Eq. (3b) and Eq. (6), where Uev
and u. t correspond to the external velocities com-
puted _y the boundary layer and lnvtscld methods,
respectively, and _ Is a relaxation parameter.
At the end of the flap-well region, the solution
procedure reverts to the Hllbert-tntegral approach.

2.2 Turbulence Model

The turbulence model used to represent the flow

on the airfoil may be expressed In terms of the
Cebecl and Smith eddy-vlscoslty formulation,

2
-_y.]} l__ylaU'tr(Cm)l= (0.4y[1 - exp (A)

0 <_ y < Yc (Ta)
C m =

I° ICm)° = 0.0168 I (ue - u)dy YtrY
0

Yc <- y < 6 (Tb)

where

1/2
_) 1

A = 26vu-I, u = (p max' Y = 1 + 5.5(y/6) 6 (8a)

The condition used to define Yc Is the continuity
of the eddy viscosity so that Eq. (Ta) is applled
from the wall outward (inner region) until Its

value is equal to that given for the outer region

by Eq. (Tb). The expression Ytr represents the
transition region and Is given by

x dx

_tr = I _ exp_G(x m Xtr ) _ _

Xtr e

(Bb)

Here Xtr is the 1ocatlon of the beginning of tran-
sition and G Is defined by



3

1 Ue R-1.34
G = 1200 _-2 Xtr

where the transition Reynolds number Rxt r =
(UeX/V)tr.

The locatton of the onset transition is
obtained from Michel's formula, given by Ref. 28,

Re = 1.174 (l , _)R x RO'46x (g)

When flow separation takes place upstream of the
transition location predicted by this formula,
transition is assumed to coincide with the location
of separation.

In the flap-well region, the above formulas are
modified so that

-(X-Xo)/),L
Cm = ,-(ml)+ (,.(mF) - ¢(ml))(l - e ) (I0)

Here c_ I) denotes the eddy viscosity corresponding
to the veloctty profile above the separated region

and c_ F) lncludes t_ total reqlon from the wall.The expressions for c ) and c_F_ are given by:

r -(y-yo)/A]}2
:(0.4(y- yo)[l - e la_Ytr

c(I)=
m

for y > Yo

0.0168 ue (I - -- YYtr for y > Yo

(lla)

0 for y < Yo

I -y/A 2 au

{0.4y [l - e ]} la-yYtr

(F) for y > 0

Cm " ue 0I= dy YYtr (llb)0.0168 (I - _e )

where Yo is the location of u = O, X is a relaxa-
tion parameter (usually around lO), L is a charac-

teristic length, and xo is the beginning of the
flap-well.

c m

In the wake the corresponding expressions are:

(x - xo)

= (¢m)w + [(Cm)t.e.- (Cm)w] exp [- 206 ]
(12)

where ((m)t.e. is the eddy viscosity at the trail-
Ing edge computed from Eqs. (7) and (lO) and (Cm)W
Is the eddy viscosity in the far wake given by the

larger of

(Cm)_ = 0.064 lYmln(ue - u)dy (13a)

and

(Cm)_ = 0.064 I® (ue - u)dy

Ymln

(14b)

with Ymin denoting the locatlon where the velocity
is a minimum.

The eddy-viscoslty model for the flap-well,
llke all expressions for turbulent flows, is empir-
ical and was first tested for flow over a backward

facing step before its application to the present
problem. While the agreement with backward facing

data was satisfactory, it should be tested further
and possibly replaced by "better" expressions or
models.

2.3 Solution Procedure

In general, it is convenient to solve the equa-
tions of the previous section in transformed vari-
ables. The Falkner-Skan transformation defined by

ue I/2 UeVX)i/2f(x,n = (_-_) Y, $ = ( n) (15)

is used here and, with the usual definition of
stream function, Eqs. (1) - (3) lead to

(bf")' + _ (m + l)ff" + m(l - f,2)

af' af
. x(f' aT - f' _-_) (16)

n = O, f = f' - O, n = ne, f' = l, (l?)

where primes denote differentiation with respect to
n and

u x due
fl = __ ___

Ue , m = Ue dx

A slightly modified form of this transformation

is used when the calculations are performed in the

inverse mode by replacing ue with a reference
velocity uo, that is,

Y = VUo/VX y, _ = CUoUX F(x,Y) (18)

so that the continuity and momentum equations and
their boundary conditions, given by Eqs. (16) and

(17) become,

' 1 dw aF' aF
(bF") + _ FF" + xw _ = x[F' _ - F" _] (Ig)

Y = O, F = F' = 0 (20a)

Y = Ye' F' = w (20b)

The boundary conditions corresponding to Eq.
(5b) are obtained by applying a dlscretlzatlon

approximation to the Hilbert integral, Eq. (Sb),

I-I N
0

Ue(Xi) = Ue(Xi) + cilOl + J!l cljoj + J=I+IZcljDj

(21)

where the subscript i denotes the x-statlon where

the inverse calculations are to be performed, cll
Is a matrix of interaction coefficients, and D

given by D = Ue_*. Further details are available
in Ref. 15. In terms of transformed variables, the

parameter D can be written as

vX

D = (_--)I/2(YeW- Fe) (22)
0



and the relatton between the external veloclty w
and displacement thickness 6* provided by the
Htlbert tntegral can then be written as

(vx)l
Y = Ye' w =cll Uo /2(Ye - F) + gl (23)

where

i-I N

o + _: clioj + [ cljDj (24)
u-(xl) J=l J=i+lgl ;ll

In the flap-well region, Eq. (23) is replaced by

uo I/2

Y = Ye" Fe = W[Ye - (_'x) 6*] (25)

The corresponding boundary conditions in the wake
are

Y = Y-e, F' = w; Y = O, F = O;

Y = Ye, F' = w,

with w now given by

w = cli[w(Y e - Y_e ) - (Fe - F_e)] (__x)I/2 + gi'

o (26)

The solution of the above transformed equations is
obtained by Keller's box method, as descrlbed in
Ref. 15. Where separation occurred, the convective

term u(au/ax) was set to zero and this assumption
proved to be satisfactory for the flow on the air-
foil. The larger regions of separation associated

with the flap well and the near wake required an
additional iteration scheme based on a continuation

method. Since a llnearlzed form of the boundary:

layer equations Is being solved, it is necessary
that the calculations at station xi have initial
profiles which are usually assumed to correspond

to those at a previous x-station, x_T/ With
increasing flow separation, the effect vrl_he ini-

tial profiles on the solutions at xi increases
and can lead to breakdown. A remedy to thls prob-

lem is to define the velocity profile at xi to
be of the form

Into the wake. As a consequence of the above, a

blowing velocity is available on the airfoil and
in the wake. In the flap-well region, the blowing

velocity vn is defined by

(u,;,vn = (28)

where 6" = _* - &t" Here 6 t corresponds to the
body shape assumed to exist over the flap-well.

Elsewhere, the blowing velocity is given by

Vn = d (Ue6,) (29)

With the blowing velocity distribution known
everywhere in the flowfleld, a new distribution of

external velocity Uei(X) Is obtained from the
panel method. As before, the boundary-layer solu-
tlons on the upper and lower surfaces of the air-
foil are obtained with the Hilbert Integral in

which the edge boundary condition, Eq. (21), is
now written as

i-l
K +

Ue(X)= Ue(Xt) + clio 1 j!lCt.l(Oj - O_)

N

+ Z clj(D J D;)- '_ (30)
J=l+l - clIOl

with K indicating the iteration cycle.

(23) also changes to

i-1
K +

gl = Ue(Xl) j!iClj(DJ D;)

N

+ Z clj(D j - D;) - cI "
J=l+l IDi

Equation

(31)

In the flap-well, with Uev known from the
previous flap-well calculation, a new 6*-dlstrl-
bution is available from Eq. (6) and is used to

obtain solutions up to the trailing edge. This
sequence of calculations is repeated for the whole
flowfleld until convergence is achieved. The con-
tinuation method discussed before is involved

within this sequence of calculations where

necessary.

u = Ure f + n(u a - Ure f) (27) 3.0 Results and Discussion

where ua denotes the velocity profile at xi_ l and
Ure f to a profile which allows solutions to be
obtained at xi. The iteration process at xi pro-
ceeds with values of n ranging from 0 to unity.

The sequence of the calculations is as follows.

The panel method provides an external , veloclty
distribution based on a body shape In which the

flap-well region is assumed to be absent. The
interactive boundary-layer approach leads to solu-

tlons on the upper surface from the stagnation
point through the regions of laminar, transitional

and turbulent flow to the trailing edge. Simi-
larly, it provides results for the lower surface

up to the beginning of the flap-well. A displace-
ment thickness distribution, 6*(x), is assumed
in the flap well and, with the continuation method
described above and with the initial velocity pro-
file similar to that of a backward-faclng step,

calculations proceed to the trailing edge. With
the upper and lower surface velocity profiles at

the trailing edge, the calculations are extended

3.1 Two-Element Airfoil

In a previous study, a similar interactive

approach was used to compute the performance char-
acteristics of three two-element alrfolls. 29

The Invlscld flow solutions were obtained by the
conformal-mapplng method of Halsey 30, rather

than the panel method used here, and the viscous-
flow calculations were performed without accounting
for the wake effects, either behind the main air-

foil or the flap. The caIculatlon method provided
results which agreed well with experlmental infor-
mation within the accuracy of the measurements up

to an angle of attack which was sufficiently small
so that there was either no or very small separa-

tlon on the airfoil and the gaps between the ele-
ments were comparatively large. In this way, the
difficulties in computing the wake of each airfoil

and accounting for the merging of the shear layers
between the airfoil and the flap, and extending the
range of the computational method to higher angles

of attack were postponed to a later time.



In the studles reported here, we first per-
formed calculations with the present method which
did not lnclude the wake effect and compared the

resu_s with those obtained wlth the earlter
code _ with Its different lnvlsctd flow method.
After ensuring that the results of both codes were
essentially the same, the wake effects were intro-
duced tnto the present method and calculations
were repeated for the three two-element alrfolls
to Investigate the role of the wake effect on the
solutions.

The first results of this paper are for two-
element airfoils for which corresponding expert-
mental investigations have been reported by Van
den Be(Q 6, by Omar et al. 9,10 and Olson and
Orloff." There are no flap wells tn these
arrangements and the novel features of the calcu-
lations are the flow between elements and the
Inclusion of the wakes.

Figures I-3 present the results of the data of
Van den Berg 6, also discussed by Van den Berg

and Oskam 7 and Oskam et al. 8, which correspond
to a supercrltlcal maln airfoil (NLR 730) with a

flap of 32% of the maln chord at a deflection angle
of 20 degrees. Measurements of surface pressure
and veloclty profiles were obtained a chord
Reynolds number of 2.51 x 105 and for angles of

attack of 6 and 13.1 degrees, the latter recognized
as the highest angle which corresponded to fully
attached flow. Lift coefficients were deduced for
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Flg. 3. NLR 7301 wing wlth flap. Calculated and

measured: local skln-frlctlon coefficients, of,
and momentum thicknesses, e/c, on the upper wlng
surfaces at (a) = = 6°, (b) _ = 13.1°

ftve angles of attack. The alrfoll arrangement Is
shown on Fig. la and it is evident that the dis-
tributions of pressure coefficients are in close
agreement with the measured values over the sur-

faces of both elements. The results at the angle
of attack of 13.1 degrees confirm the absence of
separation and the llft coefficients of Fig. 2

that stall occur at an angle larger than thls



value. The calculated variation of llft coeffici-

ent with angle of attack is close to the measure-
ment and some 3% lower than that calculated without
consideration of the wake. It is to be expected
that this difference will lncrease with angle of
attack and particularly as separation occurs and
expands over the upper trailing-edge region, and
this trend is evident in the figure.

Figures 3a and 3b show the variations of
momentum thickness and skin-friction coefficient
with chord distance over the main airfoil. The
agreement between calculated and measured results
is remarkable for both angles of attack, the only
significant discrepancies being In the skin-
friction coefficient in the upstream region of max-
imum rate of change. Again, the results at 13.1
degrees confirm the absence of separation,
although this result conveys little about the flow
on the second element.

Figure 4 presents the results for a NASA super-
crltqcal airfoil, 24 = in length, with a 7" flap at
a deflection angle of 20 degrees. The experiments
were carried out in the 36 x 96 in. wind tunnel of

the Boeing Research Laboratories at a Mach nu_b_
of 0.2 and have been documented by Omar et al. =,'u
The pressure-coefficient distributions of Figs. 4a
and 4b correspond to angles of attack of zero and
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Fig. 4. NASA supercrltlcal two-element airfoil.
Calculated and measured: (a) pressure distribution
at _ = 0°, (b) pressure distribution at _ = 8.g3 °,

The results of Ref. 2_ _r? without wake effect.

8,93 degrees wlth the measured and calculated val-
ues again within experimental uncertainty. The
wake had no effect at zero angle of attack, as
expected, and had a slight effect on the pressure
coefficients at the 8.93 degree angle, although the
improvement on the main airfoil is coupled wlth an
apparent lack of improvement on the flap. These
results are reflected in the lift coefficients of
Fig. 5 where the calculated results with the wake
effect are In better agreement with data than those
without the wake effect.
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Fig. 5. NASA supercrltlcal two-elemen' airfoil.
Calculated and measured lift coefficients. The
results of Ref. 29 are without wake effect.

The third two-element airfoil corresponds to
that investigated by Olson and Orloff ll which
involves a NACA 4412 airfoil wlth a chord length
of O.9m upstream of a flap which has the section
of a NACA 4415 airfoil and a chord of 0.36m with a
deflection angle of 10 °. Figure 6 shows the mea-
sured and calculated surface pressure distributions
for a Reynolds number of .3 x 10° at an angle
of attack of 2.2 °. As In the first case, there is

a slight improvement over the results obtalned
without the wake which, again, may be due to the

absence of flow separation.
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Fig. 6. NACA 441214415 airfoil. Calculated and
measured pressure distributions for _ = 2.2 °.

It is evident from the comparisons of Figs. 1-6
that the flow between the airfoil elements and the
wake have been satlsfactorlly incorporated in the

interactive procedure wlth results which are virtu-
ally identical to the measurements. It should,
however, be noted that the effect of merging of the



boundary layers In these three configurations ts
negllglble.

3.2 $1ngle Alrfotl wlth a Flap-Well

An appraisal of the Interactive boundary-layer
procedure, as applied to the flow In and around a
flap well, required corresponding measurements and
a parallel experimental program which was carried
out at the California State University, Long Beach,
wtth the slngle airfoil arrangement of Ftg. 7. The
experiment described In Ref. 4 used this 1E-Inch
chord airfoil, which corresponds to the main ele-
ment of the three-element configuration tested In
the low-turbulence tunnel of the NASA Langley
Research Center, and described by Nakayame. 3 The
chord Reynolds number was 0.5 x 10 b, and surface
pressures were measured for angles of attack up to
14 degrees wlth local velocity information In the
flap well at an angle of attack of 5 degrees. Flg-
ure 8 presents the measured and calculated surface-
pressure distributions for angles of attack of 5,
8 and 12 degrees wlth transition tripped at 0.25c,
and the agreement Is generally good. The calcu-
lated upper-surface pressure peak close to the
leading edge reflects the better spatial resolution
of the Interactive method, and close to the trail-
ing edge there are some small disagreements which
may stem from the flap-well results. Neverthe-
less, the pressure-coefflctent distributions
represent closely the measurements In the flap-
well with the near constant values indicating the
region of reclrculatlon followed, as can be seen,
by a rapld Increase In pressure coefficient after
reattachment.

0.70 0.74 0.78 0.82 0.86 0.88

oo ot o_ o} os X/1 l_ o6 o7 om ol

Flg. 7. Single alrfoll wlth flap-well cut.

Figure 9 shows calculated profiles of stream-
wlse velocity, streamlines and the distribution of
skln-frlctlon coefficients within the flap well.
The profiles differ increasingly from the measure-

ments In the near-wall region, although reattach-
ment occurs at about the same location. The

reasons for the discrepancy are likely to be
associated with the turbulence model that Is used

here to represent a near-wall flow, which undoubt-

edly involves low-Reynolds-number characteristics
together wlth a switch from a wall Jet In the nega-

tive to a boundary layer In the positive direction.
It Is unlikely that these local differences will

affect greatly the outer region, particularly since
the negative velocities and momentum are small, so
that the calculated distribution of displacement
thickness of Flg. 9b is likely to be correct. The
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Fig. 8. Comparison of calculated pressure dlstrl-
butlons wlth data for Rc = 0.5 x lO6 at (a)
a = 5.0, (b) a = 8.0, (c) Q = 12.0.

dlstrlbutlon of skln-frlctlon coefflclent, Fig. 9c,

indicates negative values up to reattachment at
0.87c which Is In agreement wlth the velocity

profiles.

3.3 Three-Element Airfoils

With the posltlve results of Figs. 1 to 9 for
three two-element alrfolls and for an airfoil with

a flap-well, it is approprlate to consider the
appllcatlon of the _nteractlve boundary-layer
method to a three-element airfoil wlth a flap well.
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Fig. g. Results for Rc = 0.5 x 106 at e = 5.0.
(a) Velocity profiles in the flap-well region. (b)
Recirculatlon streamline and the location of the

displacement thickness. (c) Calculated local skin-
friction coefficient in the flap-well region.

The chosen configuration Is shown on Fig. lO and

corresponds to the hlgh-lift model, tested in the
NASA, Langley and California State wlnd tunnels at
Reynolds numbers of 5 x lO 6 and 0.5 x lO G, respec-

tlvely.3, 4 The slat deflection angle was -30

degrees and the flap deflection angles 15 and 30
degrees with angles of attack of 4 to 20 degrees.
The measurements were made by a combination of hot-
wire and laser-velocimetry techniques, the latter

was primarily used in regions of separated flow.

Fig. I0, The three-element airfoil with analytical

and experimental fairing, _s " -3D°, &f " 15°"

Calculations were initially made on smooth
bodies wlthout explicitly considering the flow in
the flap-well region. Also, because the potential

flow theory predicts flow singularities at the
discontinuity of the airfoil geometry, the sharp
corner of the slat and the flap-well cut out of

the main alrfoll were smoothed to prevent solu-
tions from breaking. Figure lO shows the modified

geometry of this airfoil with the flap-well fairing
and the rounded slat used in calculatlons. The

so-called "experimental fairing" refers to the
dividing streamline which was determined from mea-

surements, while the "analytical fairing" was drawn
arbitrarily. Figure II shows the velocity vectors
for a particular combination of gap and overhang

and the position of the streamline dividing the
recirculating flow behind the flap-well step from
the outside flow, as determined from the mean-
velocity vector data. The position of this dlvid-

%ng streamline is important since it corresponds
roughly Lo {he equlvaient smooth body with pressure
distribution close to the real one. Hence, this

dividing streamline was used as the "experimental
fairing" in the calculations. Figure 12 shows the
surface-pressure distributions on the slat, main
airfoil, and flap at three angles of attack (4°,

12° and 16 °) for the configuration with the experi-
mental fairing, and Fig. 13 shows the corresponding
distributions at the same angles of attack for the
configuration w_th analytical fairing. Overall,
the calculated results agree well with experl-

mental data except for the slat at low angles of
attack and the pressure peak on the main airfoil.

Thls discrepancy may be caused by the differences
between the assumed slat shape and the real one.
In the flap-well region, the results are in better

agreement with measurements when the fairing is
close to a real streamline.

Finally, the method of Section 4.2 was applied
to include the calculation Ins%de the flap-well.
The results, Shown In Fig. 14, agree well w%th
measurements for all Lhe cases indlcated above and

including angles of attack up to 20 °. This con-
firms that it is unnecessary to make a priorl

Fig. II. Velocity vectors in the flap-well region
by laser velocimeter.
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Fig. 12. Pressure distribution on the three-
element airfoil with _experimental fa|rtng for

6f = 15 ° and Rc = 5 x lO b, (a) a = 4 °, (b) _ = 12 °,
(c) = = 16 °.

assumptions about the fairing shape, and allows
for further detal]ed investigations of the recirc-
ulatlon flow In the flap-well, such as the gap and
overhang effects. Figure 15 shows the variation
of llft coefficient with angle of attack, confirm-
lng that the present calculation method leads to
values which are In close agreement with

experiment.

o

. u

b

(c) " ................. .
x/c

Flg. 13. Pressure d_strlbutlon on the three-
element a_rfo_l wl_h-ana_ytlca] fairing for 6f
= 15 ° and Rc =5 x I0 °, (a) ¢= = 4 ° , (b) ¢=
= 12 ° , (c) : : 16 ° .

Comparison of pressure coefflctents for a flap
deflection angle of 30 ° , F_g. 16, allows similar
conclusions to be drawn to those of the previous
paragraph. Also, the calculated l_ft coefficients
shown _n Fig. IT are very close to measurements.

4.0 Concluding Remarks

The results and discussion of the previous
sectlon show that the present _nteractlve method,
with _ts consideration of the flap-well region and
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Flg. 16. Continued.

the wakes, leads to pressure coefficient dlstribu-
tlons and values of llft which are In good agree-
ment with experiment for single and multlelement

configurations with angles of attack up to 20 ° .

The present method neglects the confluent

boundary layers, which become important as the
distance between the main airfoil and the flap

becomes smaller or where the shear layer thickens
with angle of attack. Also, close exam_natlon of
the turbulence model In the vicinity of this merg-

ing 'region Is desirable. The incorporation of
improvements to consider these aspects is likely
to lead to a more generally applicable method.
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Flg. 17. Variation of the lift coefficient with
angle of attack for the three-element airfoil with
&f = 30 ° and Rc =S x 106.
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Experimental studies have been conducted to

assess Reynolds and Mach number effects on a

supercritical multielement airfoil. The airfoil is

representative of the stall-critical station of an

advanced transport wing design. The experi-

mental work was conducted as pan of a coop-

erative program between the Douglas Aircraft

Company and the NASA Langley Research

Center to improve current knowledge of high-

lift flows and to develop a validation database

with practical geometries/conditions for

emerging computational methods. This paper

describes results obtained for both landing and

takeoff multielement airfoils (four and three-

element configurations) for a variety of Mach/

Reynolds number combinations up to flight

conditions. Effects on maximum lift are con-

sidered for the landing configurations and

effects on both lift and drag are reported for

the takeoff geometry. The present test results

revealed considerable maximum lift effects on

the three-element landing configuration for

Reynolds number variations and significant

Mach number effects on the four-element

airfoil.
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Introduction

Commercial transport aircraft wings are con-

figured with leading-edge slats and trailing-

edge flaps to meet takeoff and landing opera-

tional requirements. High-Lift systems have

traditionally been complex in order to attain

the aerodynamic capability of generating high

L/D in climb and high maximum lift on ap-

proach. However, increased financial pressures

in the airline business demand high-lift wing

designs that axe simpler and easier to maintain

while achieving improved aerodynamic perfor-

mance over previous-generation designs. A

major obstacle in the design process towards

more efficient multielement airfoils has been

the lack of published data on the effects of

Reynolds and Mach number over a realistic

range for representative multielement airfoils.

This lack of data is also likely to have delayed

the development of computational methods



suitable for the analysis of practical multi-

element airfoils at conditions of interest (maxi-

mum lift). Several purely computational

methods have been recently reported in the

literature 11° that can handle, to various degrees

of success, the viscous flow over multielement

airfoils. However, these methods have largely

been applied to either geometries that are not

really representative of transtxn't high lift

airfoils or to flow conditions that do not in-

clude maximum lift. It is expected that some of

these methods (either Navier-Stokes or bound-

ary-layer based) hold significant promise but

may not be substantially improved by their

developers in the absence of a quality database _

at realistic conditions for a practical airfoil.

The work reported in this paper is the result of

a cooperative experimental program conducted

by the Douglas Aircraft Company and the _

NASA Langley Research Center to establish a

database for Reynolds and Mach number

(including flight condition) effects on the flow

over transport multielement airfoils.

tions tested are shown in Fig. 2. The slat chord

mu_/cooa_

,_kmd m.C _ X_ -
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Figure 1. Schematic of Low Turbulence

Pressure Tunnel

Test Facility and Model Description

The Langley Low Turbulence Pressure Tunnel

(LTPT) is a single return, closed-throat wind

tunnel that can be operated up to 10 atmo-

spheres thus allowing very high Reynolds

number capability 1] (Fig. 1). The test section is

3 feet wide by 7.5 feet high by 7.5 feet long.

To promote two-dimensional flow over the

model in view of its low aspect ratio and

strong wall-model aerodynamic interference, a

new side-wall boundary layer control (BLC)

system was installed at the LTPT for the

present test z2. The BLC system employed the

differential pressure between the test section

and the a_osphere to provide suction of the

boundary layer through porous endplates. The

system yielded good quality two-dimensional

flow over the model for the Reynolds numbers

tested z2. The model spanned the width of the

test section and had a clean (stowed) airfoil

chord of 22 inches. The clean airfoil and the

takeoff and landing multielement configura-

d
Figure 2. Airfoil Configurations Tested in the

LTPT

ratio was 14.48%, the single-segment flap

chord ratio was 30%, and the two-segment flap

had a chord ratio of 21% for the main segment

and 13% for the auxiliary flap. Pressure ori-

rices were located along the centerline of the

model (142 taps for the four-element configu-

ration). Additionally, pressure taps were

located along (or near) the trailing edge of each

airfoil element to monitor two-dimensionality

of the flow at run time. Integration of the

pressure measurements yielded the forces

presented here. The data is corrected for the

effects of the sidewall suction system on the

tunnel parameters and no blockage corrections

were applied. Four rows of streamlined sup-

port brackets for the high-lift devices (Fig. 3)



were required due to the very high loads (up to

15,000 pounds) associated with the high

freestream dynamic pressure and lift coeffi-

cients attained. Drag data were computed by

integration of the static and total pressures

obtained from the LTPT wake survey rake

system.

the extent of turbulent flow that would natu-

rally occur at flight Reynolds numbers on an

airfoil (or wing) but not at the low

II _ang

 a,, ll 0S ,,own
. _._ _fWuss y

Clean Wing

_ _ !_ _.._,Max Length Une

-Overhang" "_

Figure 4. Nomenclature for Mu]tielements

Figure 3. LTPT High-Lift Model Support
Brackets

Results

A significant fraction of the wind tunnel

testing associated with multielement airfoils is

aimed at optimizing the rigging of a particular

"airfoil with fixed slat and flap chord ratios.

Parameters deirming rigging nomenclature for

multielement airfoils axe shown in Fig. 4. The

optimization work is traditionally performed at

a given Mach/Reynolds number that should be

representative of nominal flight conditions.

However, it is also very important to determine

the effects on the performance of the optimized

airfoil for departures in Reynolds or Maeh

number from the nominal conditions. It was

possible to perform these measurements

(Reynolds and Math number sweeps) at the

Langley Low Turbulence Pressure Tunnel

because of its considerable operational capabil-

ity (Fig. 5).

The application of so-called transition strips in

wind tunnel testing is an attempt to simulate

RNIft

0

Figure 5.
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Operational Capability of the LTPT

wind tunnel Reynolds numbers typically

attainable. Hence, in a facility such as the

LTPT where flight Reynolds can actually be

achieved it is not necessary to attempt to

simulate transition on the airfoil. Additionally,
the low turbulence level achieved in the test

section increases the applicability of results

obtained at a given Reynolds number since this

is more representative of flight conditions.

The accurate modeling of transition over a

wide range of angles-of-attack, Reynolds/

Math number combinations, and multiple

airfoil elements is not practical. All results

shown here were obtained transition-free.



The effectsof Reynolds number on the clean

airfoilmaximum liftcapabilityatvarious

Mach numbers isshown inFig.6.Itcan be

sccn thatthereisa considerableinca'casein

maximum liftbetween Reynolds numbers of

2.5 x I06and 9 x I0_.Corresponding surface

pressureson theclean airfoilatmaximum lift

are shown inFigs 7-10.The effectsof Mach

number on maximum liftare shown inFig. Il

forReynolds numbers from 5 to 18 x I06 It

can be _en that the effect of Mach number is

substantially more pronounced at the lower

Reynolds numbers. Lifts curves at 5 x 10 s and

9 x 106 arc shown in Figs. 12 and 13 where

Mach number can be seen to affect the stall

angle as well.
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These results shown for the basic clean airfoil

(Figs. 6-13) served to establish a baseline for

both Reynolds and Math number effects for

the subsequent multielement airfoil measure-

ments and they may also represent a logical

starting point for the validation of any viscous

flow method since surface grid complications

are at a practical minimum and flow features

through the maximum lift condition are still

complex enough to be of interest.
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Takeoff Confi_ration

A three-element airfoil configured for takeoff

was tested at various combinations of

Reynolds and Mach number as shown below:

Freestream Mach Number

0.15 0.20 0.26 0.30 0.32

RNx 10.6

5

9

16

20

X X X X

X X X X X

X X

I

18

The slat deflection was 20 ° (gap = 0.55%,

overhang = + 1.0%), and the flap was rigged at

a gap of 1.82%, overhang of 1.5%, and 10 ° of

deflection. For a takeoff configuration the slat

is normally sealed (gap = 0%) to minimize

profile drag, however, an open slat was chosen

for this study since it should be less difficult to

grid from a computational analysis perspective.

Additionally, this particular open slat configu-

ration yielded takeoff performance close to that

of a sealed slat at a representative lift coeffi-
cient.



Lift curves and drag polars for Reynolds

numbers from 5 to 16 x 106 at Mach 0.15 are

shown in Fig. 14. There is a loss in maximum

lift and improved drag performance with

increasing Reynolds number. It is also inter-

esting to note that while the main element

enters the stall first, it is soon followed by the

slat and not the flap..In fact, the flap lift coeffi-
cient increases after the stall. This effect

appears to be due to the drastically reduced
downwash from both the slat and the main

element and the fact that the geometric deflec-

tion of the flap (10 °) is not enough by itself to

cause the flow on the flap to separate.

Reynolds number effects on lift and drag

obtained at Mach 0.20 are shown in Fig. 15.

Here, it is evident that the Reynolds number

effect is largely on drag and not on lift. Differ-

ences in measured drag are approximately i0%

between 5 x 106 and 20 x los Reynolds num-

ber. Again, the flap loads up after the main

element and the slat enter the stall. In fact, it is

now clear that the flap loads up after the slat

stalls. Results at Mach 0.26 and 0.30 are

shown in Figs. 16 and 17, respectively. At

these two Mach numbers the Reynolds number

effect is to increase maximum lift (opposite

trend from Math 0.15) but, in general, the

Reynolds number effect on either lift or drag is

minimal. It is worth noting that at these condi-

tions even though the main element exhibits a

pronounced stall, the slat does not, and the flap

displays only a slight tendency to load up

beyond the stall. That the slat does not really

stall, as it did at lower Mach numbers, is a

result of the slat being exposed to a lower

geometric angle-of-attack (lower airfoil stall

angles at higher Mach numbers). Mach number

effects on the takeoff configuration at

Reynolds numbers of 5 x 106, 9 x los, and 16 x

106 are shown in Figs. 18, 19, and 20, respec-

tively. Overall, the measured effect of Mach

number on Cd at a given Reynolds number can
be seen to be in the scatter band of the data

(within 10 counts). However, the Mach effect

on lift is substantial.

Landing Configur'_tions

Two landing configurations were selected for

Reynolds and Mach number effects studies.

The leading-edge slat was optimized for both

configurations and was positioned at a gap of

2.95% with an overhang of -2.5% and 30 ° of

deflection.

The single-segment flap airfoil was configured

with the flap op_zed at a Reynolds number

of 9 x l0 s at 30" of deflection with a gap of

1.32% and an overhang of + 1.0%. A Reynolds

number sweep was conducted at Math 0.20

and effects on maximum lift are shown in Fig.

21. There is a considerable loss in C_, (~ 0.1 )

at Reynolds numbers other than 9 x l0 s. Total

and component loadings are shown in Fig. 22

where it can be seen again that the airfoil stall

is caused by the main element. Unlike the

takeoff cases reviewed above, the slat contin-

ues to load up beyond the airfoil stall. This is

possibly due to the slat position being aerody-

namically underdeflected (-10 °) with respect to

the takeoff slat discussed. Surface pressure

measurements obtained at the three Reynolds

numbers at maximum lift are shown in Fig. 23.

Although the data are ciosely matched, being

able to discern a difference of 0.10 in C x

performance is of considerable importance in

transport high-lift aerodynamics.

The second landing arrangement tested was a

four-element airfoil with a two-segment flap.

The optimum slat position was the same as for

the three-element landing airfoil. The main

flap was optimized at 35 ° with a gap of 2.9%

and an overhang of- 1%. The auxiliary flap
was deflected an additional 15 ° and had a non-

optimized gap of 0.68% and an overhang of

0.75%. Reynolds number effects at 0.20 Mach

number are shown in Fig. 24. It is evident that

the effects of Reynolds number on maximum

lift are minimal for the Reynolds number range

tested. This can be contrasted with the substan-

tial Reynolds number effects shown for the
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single-segment flap configuration. It is

possible that this difference in dependence on

Reynolds number could be due to the large

optimum gap for the two-segraent flap and the

much smaller (approximately half) optimum

gap for a single-segment flap. These different

gaps represent different enough slot geometries

between the main element and the flap which

could lead one configuration (single-segment

flap) to be more Reynolds number sensitive
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Figure 22. Reynolds Number Effect on Lift

(5, = 30 °, 5f = 30 °)

than the other. Total and component loadings

are shown in Fig. 25 and the corresponding

surface pressures at maximum lift are shown

in Fig. 26. It is interesting to note from Fig. 25

that there is a reduction in stall angle with

increased Reynolds number for this four-

element configuration. This stall angle reduc-

tion trend was not as apparent for the three-



element airfoil. The effect of Mach number on

maximum lift at a Reynolds number of 9 x 106 s5

is shown in Fig. 27. Total and component so

loadings are shown in Fig. 28. It can be seen 4.5

that increasing Mach number causes reductions 4.0
a5

in both maximum lift and stall angle, ctao
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Conclusions

Experimental studies of the effects of Reynolds

and Maeh number variations on the perfor-

mance of a practical transport-type

multielement high'li_ airfoil have been pre-

sented. The studies were conducted at the

NASA Langley Low Turbulence Pressure

Tunnel under a coope_tive program between

the Douglas Aircraft Company and the NASA

Langley Research Center to establish a high-

quality database for these effects that can be

used in the calibration/validation of computa-

tional methods in development for practical

multielement airfoil configurations. Salient

findings of the present work are:

° Reynolds number effects are significant

even on the single-element airfoil below

5 x 106 Reynolds number.

2. Mach number effects were more pro-

nounced at the lower Reynolds numbers.

.

,

°

effects on maximum lift were substantial.

For the three-element takeoff configura-

tion the main element of the airfoil enters

the stall first and is followed by the slat

stalling. The flap does not stall.

Significant Reynolds number effects were

apparent for the three-element landing

confi_tions.As observed in the _eoff
work, the main element of the airfoil stalls

first. However, both the slat and flap

continue to load up after the main element
stalls.

Mach number effects on the four-element

landing configuration were substantial.

Reynolds number effects were not as large
as those measured on the three-element

airfoil. Additionally, the four-element

results show a def'mite reduction in stall

angle with increased Reynolds Number

which was not apparent in either the

takeoff configuration or the three-element

landing configuration.

°

.
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Wake Surveys N9 3"0"I 7' '
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Theoretical and practical aspects of conducting
three-dimensional wake measurements in large wind
tunnels are reviewed with emphasis on applications
in low-speed aerodynamics. Such quantitative wake

surveys furnish separate values for the components
of drag such as profile drag and induced drag but also ft
measure liR without the use of a balance. In addition MAC
to global data, details of the wake flowfield as well as ref

spanwise distributions oflift and drag are obtained, o_
The paper demonstrates the value of this measure-

ment technique using data from wake measure-
ments conducted by Boeing on a variety of low-speed
configurations including the complex high-lift
system of a transport aircraft.

Nomenclature

b

C

CD

CD i

Dp

Cl
M

P

Pt
q
Re
S
U
v,w
y,z

ACD
cp

P
(I

model span
local wing chord

total drag coefficient
induced drag coefficient
wing section induced drag coefficient
profile drag coefficient
wing section profile drag coefficient
total lift coefficient
wing section lift coefficient
Mach number

static pressure
total pressure
dynamic pressure
Reynolds number
tunnel cross-section area

axial velocity component
crossflow velocity components
Cartesian coordinates in measuring
plane
angle of attack
upsweep drag
velocity potential, equation 11
density
source, equation 9

* Principal Engineer, Aerodynamics Engineering
Copyright retained by The Boeing Company, 1991.

Subscripts

axial component ofvorticity, equation 8

stream function, equation 10

valueper foot

mean aerodynamic chord
referencecondition

freestreamvalues

Introduction

Qualitative wake surveys employing wake imaging
(ref. 1) have verified that most aerodynamic flows of
interest are stable. Moreover, they can be surveyed

economically in large wind tunnels using mechani-
cal traversers and pneumatic probes. Qualitative
wake surveys are conducted to visualize the flowfield,

which is a prerequisite to a better understanding of
aerodynamic performance.

Quantitative three-dimensional wake surveys are a
natural extension of wake imaging. They allow sepa-
rate measurements of profile drag, induced drag,
and lift including spanwise distributions. However,
there are significant differences in data acquisition
and processing between wake imaging and quantita-
tive wake surveys. The latter requires the use of a
pneumatic probe with multiple holes instead of a
single total pressure probe to record pressures and
velocities which can then be converted into aerody-
namic forces. Furthermore, quantitative wake
surveys require very accurate probe position
measurements since spatial derivatives of flow
velocities must be computed during data reduction.

Quantitative wake surveys are of much value to the
aerodynamic design of airplanes for the following
reasons:

a. They can be used as a diagnostic tool during airplane



development to study the effect of configuration
changes on the components of drag.

b. Separate measurements of induced drag and profile
drag facilitate the prediction of flight drag based on

measurements at low Reynolds number wind tunnel
test conditions. This is because induced drag and
profile drag are associated with different flow phe-

nomena which must be scaled differently to accou _
for changing Reynolds number.

C. Separate measurements of the components oCdrag
are also ofvalue to the developer of CFD codes since
profile drag and induced drag are usually predicted
with different aerodynamic flow models that must be
validated separately.

This paper describes the wake survey technique in
use at the BoeingAerodynamics Laboratory which is
based on the work of Maskell and Betz. The under-

lying theory for the measurement of induced drag
and lif_ had been published by Maskell (ref. 2), who
also conducted an exploratory wind tunnel test
confirming the validity of his method. The theory for
the measurement of profile drag is that of Betz

(refs. 3, 4). Briefly, model drag and lift can be written
as integrals of flow velocities and total pressure, as
is well known from basic aerodynamic principles.

However, a straightforward application of these
equations would not be practical since all three
components of velocity would have to be measured
throughout the wind tunnel test section. The basic
approach employed by Maskell and Betz was to
rewrite the drag integrals in terms of flow variables
that vanish outside the viscous wake, thereby limit-
ing the wake measurements to a small part of the
flowfield. Maskell expressed the main contribution
to the induced drag integral in terms of the stream-
wise component of vorticity, whereas Betz limited

the profile drag integration to the viscous wake by
introducing an artificial streamwise velocity. This
opened the door for practical applications of quanti-
tative three-dimensional wake surveys.

The wake survey methodology in use at Boeing also
includes certain features of the work of others. Among
them are Hackett and Wu (refs. 5, 6, and 7), who
contributed to the theoretical foundation and devel-

oped a practical wake survey method with emphasis
on applications in automotive engineering.

Several other experimentalists reported quantita-
tive wake surveys. Onorato et al. (ref. 8) conducted
wake measurements behind models of automobiles,

but their drag analysis does not utilize the simplifi-
cations introduced by Maskell and Betz. Chometon

and Laurent (ref. 9) performed wake measurements

on a simple wing to investigate the relation between
induced drag and vortex drag. Westen of NASA
Langley (ref. 10) conducted quantitative wake sur-
veys behind wing half models based on the theory of
Maskell and Betz. In his data analysis, Weston
focused on the role of vortex cores and modified the

definitions of profile drag and induced drag imple-
menting an earlier proposal of Batchelor (ref. 11).
EI-Ramly and Rainbird published a number of
papers (refs.12 to 15) describing complete flowfield
measurements behind wings from which aerody-
namic forces were calculated, but they do not provide
details of their theoretical analysis.

Wakes of two-dimensional airfoils have been

routinely measured for many years with the primary
objective of getting accurate profile drag data that
cannot be obtained from balances. Wake surveys of
three-dimensional configurations have occasionally
been conducted but are not widely accepted by
design aerodynamicists. The main reason for this is
a legitimate concern about the cost of such wake =
measurements that require the measurement of a
large number of data points. This can indeed be a
time-consuming and, hence, expensive process if
methods that work so well in two-dimensional wake

surveys are applied without further refinements. In
addition, three-dimensional wake surveys were
suspected to be inaccurate since the desired drag
and lift values are the composites of a large number
of individual measurements. This paper addresses
these and other issues and reports on the progress
made since Maskell conducted the first wind tunnel

test of this kind at the RoyalAircraft Establishment

in the U.IZ_ some 20 years ago.

Theory

Assumvtions

Aerodynamic forces are calculated from the mea-
sured wake flow data assuming:

a. Wake flow data are measured in a single plane
downstream of the model. This plane, located at
the so-called wake survey station (fig. 1), is
assumed to be perpendicular to the wind tunnel
axis. In most wind tunnels, the wake survey
station must be moved very close to the model
because of test section and hardware limitations.

b° The flow at thewake survey station is steady and
incompressible, which limits the freestream Mach
number in the wind tunnel to about 0.5. This does
not turn out to be a serious limitation, as will be
discussed later.



C°

d°

e.

The flow in the empty wind tunnel is a uniform
freestream parallel to the tunnel axis. Any devia-
tions from this ideal wind tunnel, as well as

instrumentation misalignments, are assumed to
be accounted for by measurements at the wake
survey station with the model and its support
apparatus removed.

The effective ceiling, floor, and side walls of the
empty wind tunnel, defined as the geometric
walls modified by the displacement thickness of
the wall boundary layers developing in the empty
tunnel, are such that the tunnel freestream

velocity is everywhere tangent to these surfaces.
Note that the presence of a model, particularly a
model that is large compared to the test section
size, will disturb this displacement surface. Also
notice that this choice neglects the possible effect
of an axial pressure gradient in the empty tunnel
(buoyancy).

Viscousshearstressesatthewake surveystation

are neglected.

As written,the equations do not account for

blowingorsuctionthroughthe model surfacebut

couldeasilybe modified.

C 7s
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I ....1

I :_:'::i:_:iiii!:ili_i-ii_iiiii_iiiiil
•=_ =================================================================

uoe u
Poo I ................

I Viscous wake 1I p
Poe L J p

Wake survey station J"

Figure 1. Control Volume for Derivation of Wake
Equations

Components of Drag

With these assumptions, an application of the
momentum integral theorem, employing the control
volume shown in figure 1, provides the following
equation for model drag

D= Sy(pt, -Pt)ds+ P f_(V2 +W2)ds

wake S

p 2 (1)
_If(u£.. - uZ)ds+

s

in which the symbol Pt denotes total pressure and V, W
are the components of the crossfiow velocity in the

measuring plane perpendicular to the tunnel axis
(fig. 2). U and p denote the velocity in the direction
of the tunnel axis and density, respectively. Undis-
turbed freestream values are indicated by the

subscript _.

W,z

============================================================================.........:.:.:...V,,y
Viscous wake

\ /
Figure 2. Crossflow Notation

Here, the first term is an integral of the total
pressure deficit that is sometimes used as a measure

for profile drag even though it is not the only contri-
bution to this type ofdrag. As indicated, this integral
is limited to the viscous wake since the total pressure

deficit is zero outside this region of the flow. The
second term, representing the kinetic energy of the
crossflow, is called vortex drag whereas the third
term containing axial velocities does not have any
particular name in traditional nomenclature. We
will see below that this third term contains contribu-

tions to both profile drag and induced drag.

It should be emphasized that equation 1 is valid for
configurations in locally compressible flow since the
assumption of incompressible flow has only been
applied to simplify the velocity and pressure terms
at the wake survey station and far ahead of the
model.

Equation 1 is not well suited for use in a practical
wake measurement technique since only the first
integral is limited to the viscous part of the wake. An
evaluation of the other two terms would require the
measurement of all three velocity components
throughout the tunnel cross-section area S.

In order to obtain an equation for profile drag that is

suitable for practical wake measurements, Betz

(ref. 4) introduced an artificial axial velocity, U',
defined by the equation

U*2 =U2 +p(Pt.o-Pt)
(2)
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Notice that U" is the same as the true axial velocity
U outside the viscous wake, where the total pressure

is Pt._' If one also introduces a perturbation velocity,

defined by u'= U -U**, drag can be written as the

sum of profile drag Dp and induced drag Di

D = Dp + D i (3)

with

Dp = lI[pt. P * *-pt+-_(U -U)(U +U-2U**)lds (4)

wake

De = P fl (V2 + W2 - u'2 )ds (5)

wake

The measurement of profile drag can now be
conducted economically by measuring total pressure

deficit and axial velocity in the viscous wake only.

Motivated by the need to also limit the measurement
of induced drag to the viscous part of the wake,
Maskell (ref. 2) interpreted the axial velocity pertur-
bation term in equation 5 as a blockage correction in
which blockage velocity is calculated from

wake

This blockage correction can easily be implemented
by replacing the tunnel freestream velocity in the
profile drag equation by an effective freestream

velocity, Ue = u + ub.

The elimination of the u'-term from the induced drag

equation is the most questionable aspect of Maskell's
theory since the distinction between vortex drag and

induced drag disappears. In principle, the u'-term
should remain part of induced drag even though it is
probably small compared to vortex drag in many
applications (ref. 16).

Induced Dra_

According to Maskell, the remainder of the induced
drag equation can be approximated by

D i = -_

wake S

where the symbol _ represents the component of
wake vorticity in the direction of the tunnel axis,
referred to below as axial component ofvorticity, o is
the crossflow divergence or source. They are calcu-
lated from the measured crossfiow velocities V, W

using the definitions

Jw 3v
= (8)

Oy Oz

Jv Ow Ju (9)
°--

The symbol _ is the stream function obtained from
a solution of

02_ 02_ .

--_-+ &-_ =-¢ (10)

It describes a flowfield that is induced by the axial

component ofvorticity. Equation 10 must satisfy the
boundary condition _I'= 0 at the tunnel walls so that
they become a streamline of this two-dimensional
flowfield.

The symbol ¢ denotes a velocity potential calculated
from

32_ 32¢

..g..I+-T =o- (11)

and the following boundary condition of no flow
through the tunnel wails

----_=o
0n

Notice that the first integral in equation 7 is limited
to the viscous wake since vorticity vanishes outside.
The second term would still require measurements

throughout the test section area but wake measure-
ments behind models of airplane configurations have
shown that the source a is negligibly small outside
the viscous wake. Hence, induced drag can be

approximated by

wake

Lift

The momentum integral theorem together with the
control volume of figure I yields the following equa-
tion for lift

S4 S3 S

where the first two terms represent the difference in
static pressure between tunnel floor and ceiling.
This integration is performed along upper and lower
surfaces of the control volume, denoted respectively

by $3 and $4. The third term arises from the
downwash behind the model. The equation for lift
can be cast into the following form (refs. 2, 16)

L=pU** Ify_ds+pII(Uoo-U)Wds (14)

wake S
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in which the firstintegralisexpressedinterms of
axialvorticitythat vanishes outsidethe viscous

wake and,hence,onlyrequiresmeasurements inthe

wake. In most casesthesecondintegralisexpected

tobe small so thatliftcan be approximated by

L =pUoo IIy_ds (15)

wake

Instrumentation

Five-Hole Probe

Most three-dimensionalwake surveysconductedby

Boeing employ pneumatic probes with multiple
orificesmounted on mechanicaltraversers.Allwake

survey testsdescribedin thispaper used a single

five-holeconicalprobe0.25inchesindiameter(fig.3)

in a fixedpositionornonnullingmode forfastdata

acquisition.Rakes ofpneumatic probeshave been

consideredinordertoshortendataacquisitiontime
but were discarded to avoid the increaseddata

handling complexity associated with their use and
possible mutual probe interference. Pneumatic
probes have the following advantages for testing in
large low-speed wind tunnels:

a° They can accurately and simultaneously
measure all three components of wake velocity
and total pressure.

b, They provide time averages of data, thereby
limiting the data volume and data processing
time.

C, They are rugged and not easily contaminated by
dirt in the tunnel circuit.

Q
Front View

40 deg j--0.25 in E_

Side View

Figure 3. Five-Hole Probe Geometry

These features are not shared by most data acquisi-
tion systems developed for experiments in small
research facilities. However, the probes and the
mechanical traversers on which they are mounted
are intrusive and will disturb the flow to some

degree. Under certain conditions, intrusive probes
are known to cause meandering of the vortex in

which they are inserted and make the vortex core
appear larger than its true size (ref. 17). Perhaps an

even greater concern in using such measuring

systemsistheflowdisturbancedue tothe traverser,

which can cause significantperturbationsofmodel

and drag.These potentialproblems representa

great challengeto the experimentalistwho must

achieveaworkablecompromise between the_gidity
ofthe measuring system and itsintrusiveness.

Probe Calibration

Probes are calibrated by placing them at selected
pitch and yaw angles in a flow of known total and

static pressures (ref. 18). This provides calibration
curves for the deviation between true and indicated

values of total pressure measured by the center hole
of the five-hole probe as a function of flow angle,
probe design, and Reynolds number based on probe
size. Furthermore, this procedure relates flow angles
and velocity components to pressures measured by
the orifices on the side faces of a multiple hole probe,
and also furnishes static pressure.

Mechanical Traverser

Most wake surveytestsconductedby Boeing utilize
verticaltraversingstrutsthatareapermanent part

ofthe wind tunneltestsectionequipment. Some-
timesan additionalmechanicaltraverserismounted

on thisstruttomove theprobeina lateraldirection
while the struttraversesthe verticaldirection.

Employing the wind tunnelstrutusuallysimplifies

the testsetup,but requirescompensation forthe
mechanical backlashofthe strut.

All wake measurements discussed in this paper used

traversers that move the probe parallel to the tunnel
side walls, providing data points arranged in a
Cartesian grid. Work is in progress on improved

traversers that move the probe along circular arcs
while the wind tunnel strut, on which the traverser

is mounted, is temporarily at rest (fig. 4). These
second generation traversers are less intrusive and
are computer controlled, which simplifies data

acquisition. However, the taskofaligning the probe
with the wind tunnel axis during the entire wake
survey becomes very difficult. A probe that is not
aligned well with the tunnel axis will measure
crossflow velocities and a corresponding apparent
wake vorticity that are partially due to probe mis-
alignment. One can account for this probe
misalignment by mapping the flow in the empty
tunnel at the same location where wake surveys are

normally conducted. The measured empty tunnel
crossflow velocities are then used to compute a
correction to the final drag and lift data. Notice,
however, that empty tunnel surveys need not be
conducted to determine the flow qualities of a tunnel



thatare known from earliercalibrationtests.

Figure 4. Mechanical Traverser in Empty University
of Washington Wind Tunnel

Data Reduction

In the usual procedure, the five-hole probe measures
total pressure deficit and all three components of
wake velocity ata large number of points, normally

in excess of 10,000. Handling this data volume in a
timely fashion is the most difficult aspect of the data
reduction procedurel Basically, the procedure
consists of two steps: A review of the data for
erroneous andFduplicate data sets, and the calcula-
tion of hi_ and drag from the final data set.

The calculation of profile drag using equation 4 is
straightforward and only requires integration. The
calculation of induced drag and lift using equations
12 and 15 is more difficult since vorticity and source
strength must be computed as intermediate results.
These calcuIations require numerical differentia-
tion of measured crossflow velocity components,

V and W, which can easily lead to erroneous values
of induced drag and lift if not done properly. Numeri-
cal experimentation with various schemes showed
that accurate vorticity and source data could be
calculated by fitting cubic splines to the measured
crossflow velocities.

In order to obtain the stream function _t' and the

velocity potential ¢ from equations 10 and 11, the

computational domain is extended with uniform
grid spacing from the wake survey region to the
walls of the wind tunnel. Where necessary, fillets
in the corners of the test section are neglected.

Values of axial vorticity and source strength are
prescribed throughout the computational domain,

which are in generalnonzero in the wake survey

regionand zerooutside.A fastPoissonsolverofthe

FISHPAK library(ref.19) provides solutionsfor

and ¢. Since the totalnumber of grid points

necessary for the calculationfrequentlyexceeds

200,000,the use ofa supercomputer isrequiredfor

thisphase ofthe datareduction.SoRware forthis

purpose has been developedatBoeing.

Standard correction methods (ref. 20) are applied to
lift and drag obtained from w_ke surveys to account
for the effects of wind tunnel walls. The effect of

model support struts is accounted for by including
part of the model support wake during wake surveys.
Most support struts shed very little axial vorticity
since they are designed to minimize the disturbance
of the circulation around the model. Hence, their

presence is primarily visible in the spanwise distri-
bution of profile drag and not in the spanwise data of
induced drag or lift. Assuming a spanwise variation
of profile drag that might exist in the absence of the
strut, profile drag can then be corrected.

Sincewake surveysare time-consuming and some

low-speedwind tunnelsarenotequippedwith aheat

exchangertocontroltemperature,profiledrag must

sometimes be correctedfortheeffectoftemperature
increaseswithtime.

Wake Survey Test Results

Three tests are described, ranging in complexity

from measurements behind a simple wing to a wing-
body-nacelle combination in high-lift configuration.
They illustrate the practical aspects of quantitative
wake measurements such as model installation,

data acquisition, test procedure, and provide
examples of the type and quality of data obtained
from wake surveys. Each of these tests has unique
features dictated by different test objectives, type
and availabihty of model and wind tunnel, and
testing budget. All tests used basically the same
data acquisition system and data reduction
procedure but different hardware.

Hi,h-LiftTestofTransuortAircraft

A largehalfmodel ofa twin engine transportwas
testedatMach 0.22and 1.4milhon chord Reynolds

number in the Boeing Transonic Wind Tunnel

(fig.5).The tunnelfeaturesan 8-by 12-fttestsection

withslottedwalls.The wing was inhigh-liRconfigu-

rationwith take-offfiapsdeployed.The model had

a half-spanof52 inchesand was installedvertically
above a horizontalsplitterplate. Two different

engine simulationswere employed including a

fiowthroughnacelleand a turbo-poweredsimulator

6



(TPS). The purpose of this experiment was to
determine the feasibility of making quantitative
wake surveys using models of realistic high-lift
configurations.

Figure 5. High-Lift Half-Model in Boeing Transonic
Wind Tunnel

Wake surveys were conducted in a plane two mean
aerodynamic chord lengths (24 inches) downstream
of the inboard wing trailing edge, which was as far
downstream as test section and data acquisition
hardware permitted. The boundaries of the wake

survey region (fig. 6) were chosen to capture wing
and nacelle wakes but did not include the wake

behind the fuselage.

Test section

Wake surveyregion

I,
Mode_._ Splitter plate /

Figure 6. Example of Wake Survey Region

Wake surveys are time-consuming since a large
number of data points must be taken to adequately
describe the wake. In this case measurements had

to be performed at about 15,000 wake points. In

order to complete a wake survey within a reasonable
time of about 2 hours, data were recorded while the
probe traversed at a fixed speed. Preliminary inves-
tigations in which the traversing speed was varied
showed that this mode of testing produced accurate
data up to a probe speed of 1 inch per second.

Measured velocities of the crossflow perpendicular
to the tunnel axis were converted into axial vorticity
as described above. Such vorticity data together
with the measured total pressure deficit provides

much insight into the structure of wing wakes.
Figures 7 and 8 show contour plots of these data for
the model with two different engine representations.
Wind tunnel test conditions and model geometry are
the same for both sets of data. The wake flows are

shown in airplane view with the wing tip vortex of
the right wing on the right side of the plots. The

nacelle region is visible on the left side of each plot.
Inboard total pressure and vorticity contours are
quite different for the two nacelle configurations
with the TPS data indicating the extent of the
powered jet. However, the outboard contours,
including the tip vortex and the powerful vortex to
the left of the tip vortex, shed from the outer edge of
the trailing edge flap, are almost identical for the
two wakes.

(a) Total Pressure Contours Pt'-Ptoo

qoo - 0.8

-O.02S
- 0.025 ^ ^

 , vo ox

-0.4

(b) Axial Vorticity Contours b

-i

-0.1

Figure 7. Wake Flow Data of Transport High-Lift
Model With Flowthrough Nacelles

Wake flow data provide important qualitative infor-
mation during airplane design but are also useful for
the validation of CFD codes. An example of the
latter is given in figure 9 where the total pressure
contours of figure 7 are compared with wake
rollup predictions obtained from A502/PANAIR
(ref. 21) for this high-lift airplane configuration with
flowthrough nacelle.
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Figure 8. Wake Flow Data of Transport High-Lift
Model With Turbo-Powered Simulator (TPS)
Powered Nacelles
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Figure 9. A502/PANA1R Prediction of Wake Shape of
Transport High-Lift Configuration
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Spanwise distributions of profile drag and induced
drag derived from the wake data of figures 7 and 8
and the corresponding axial velocity data are plotted
in figure 10. Spanwise induced drag is defined here
as the integral ofthe integrand of equation 12 in the
direction normal to the wing surface, which is

different from the usual definition of spanwise
induced drag defined as the product of wing section
life and induced angle of attack. As seen in the figure, the
major contribution to induced drag arises from the
strong tip and flap edge vortices. Profile drag of the
model with TPS nacelle includes a large region of
negative va[ues-_el)resent_ng the thrusi of the TPS
jet.-_The two con-figurations have almost identical
distributions of induced drag and profile drag for the

outerhalf of the wing, except that wing and flap
vor_ces from the TPS configuration are shifted

slightly outboard, possibly being displaced by the
TPS jet. Such good agreement of the outboard data
taken at the same angle of attack and behind the
same wing geometry demonstrates the excellent

repeatability of these measurements. It should be
emphasized that the spanwise distributions of drag
shown in figure 10 are somewhat distorted because
Of wake deformations between wing trailing edge

and wake survey station. Thus, any comparison of
spanwise drag or lift data with data from other
sources should be interpreted with caution. How-
ever, spanwise wake data frequently reveal the
origin of major contributions to drag and lift and are
therefore of much value in aerodynamic design.

The vorticity data in the wake of the TPS-powered
model were used to calculate wing spanload as
described in reference 22. The result is shown in

figure 11 together with inviscid theoretical predic-
tions of the AS02_ANAIR code. These theoretical

data represent a spanwise lift distribution, scaled by
the local wing chord and nondimensionalized by the
sum of all lift and side forces in the outboard wing

and nacelle region. Good agreement is demonstrated
outboard of the nacelle. The large differences in the
nacelle region are mainly due to sideforces, which, in
the wake survey data, could not be distinguished
from lift.

Simnle Win_ Study

The main objective of this test was to learn more
about the accuracy and measurement repeatability
of quantitative wake surveys (ref. 23). In this test,
the wake was mapped behind a simple rectangular

wing model that had a span of 6 feet and an
untwistedNACA0016 airfoilsection.The testwas

conducted at the University of Washington

AeronauticalLaboratoryinan 8-by 12-ftlow-speed
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Figure 10. Spanwise Drag Data From Wake Surveys
Behind Transport High-Lift Configuration

wind tunnel. All measurements were taken at 0.18

Mach number and 1.27 million chord Reynolds

number. The model was installedhorizontallyatthe

center of the test section. It was supported by a

floor-mounted strut that in turn was mounted on

an external balance locatedbelow the wind tunnel

(fig.12).

Wake surveys were conducted one chord length

behind the wing trailingedge and at several angles

of attack below stall.A very important purpose of

thisand other wake testshad been toverifythat the

C L CREF REF

Wake survey testaTPS nacelle

Nacelle region

Engine nacelle
center line

Figure 11.
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Spanwise Wing Loads of Transport High-
Lift Model From Wake Survey and .4502
PANAIR Code Prediction

planned quantitative wake survey would indeed

capture the wake. This was done by applying the

wake imaging technique (ref.1),which displays total

pressure contours measured by the centerhole ofthe

five-holeprobe. Since viscous wakes can be seen as

regions of totalpressure loss,the regions in which

wakes have to be surveyed can easilybe identified.

(a) Front View of Model in Test Section

8x12 ft test section "_

I_" 6 ft __ Rectangular
wing,

(b) Side View of Model and Probe Traverser

Five-hole probe ----7 "_

• / II Probe traverser

Model .L_

Figure 12.

Tunnel floor

Simple Wing Model in the University of
Washington Low-Speed Wind Tunnel



Lift curve and drag polar obtained from wake
surveys are compared in figure 13 with correspond-
ing balance data measured during this test. Wake
and balance data were recorded at the same test

conditions defined by the quoted angles of attack,

Mach number and Reynolds number. After the test,
both types of data were corrected for wind tunnel
wall effects in exactly the same way. The figure also
shows the variation of profile drag with lift
measured during wake surveys. Excellent
agreement of wake and balance data is shown in
these figures, providing proof of the high measure-

ment accuracy that can be achieved in quantitative
wake surveys.
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For practicalapplications,the abilityof a wake

surveytechniquetorepeatthe measurements with

very littledata scatterisas important as a good

absolutemeasurement accuracy.Figure14contains

tabulated data for liftand drag components

measured in threedifferentwake surveys at the

same angleofattackand atthesame wake location.
These are truerepeatruns conductedseveraldays

apart.Allwake datarepe_tedverywell,particularly

lift,totaldrag, and induced drag. Profiledrag

scatter is slightly higher than the scatter in the other
data. For comparison, figure 14 also contains a table

with repeat balance data at the same wind tunnel
test conditions.

(a)Wakesurveydatator a = 8.22deg

Wake survey C L j C O j CDp j COi
1 0.5668 0.0323
2 0.5653 = 0.0319
3 0.5651 .[_ 0.0321

(b)Balancedatafor a =8.22deg

0.0155 i 0.0168
0.0148 0.0171
0.0150 0.0171

_lance run I CL CD
i

0.5738 0.0319
0.5722 0.0318
0.5722 0.0319
0.5709 0.0319

1
2
3
4

Figure 14. Wake and Balance Measurement
Repeatability

During this wind tunnel experiment, vortex
generators were mounted on the model in order to
determine the accuracy of wake surveys in measur-
ing drag increments due to configuration changes.
Measured total wake drag increments were found to
be within one drag count of balance dragincrements.
Note that this difference is the same as the scatter in

the balance drag data (fig. 14). These results not only
demonstrated excellent accuracy in measuring wake
drag increments, but also provided the increments of
profile drag and induced drag associated with the
addition of vortex generators.

ARbodv Dra¢ Tests

Wake surveys were conducted with various fuselage

models of transport airplanes in order to improve our
understanding of aftbody flowilelds and the drag
associated with them. Contrary to most military

transports, civil transports feature moderate aRbody
upsweep with a correspondingly smaller contribu-
tion todrag. The vortic_esshed from such aftbo_es

are relativelyweak, but theirassociateddrag must
neverthelessbe understoodwhen seekingopportu-

nitiesforairplanedrag reduction.

AftbodY-dragexperiments were carriedOut in the

Boeing Research Wind Tunnel in Seattleat 0.18

Mach number and i.18millionReynoldsnumber per

foot.Inalltests,thefuselagewas supportedby wing

stubsextendingthrough the tunnelsidewallsthat

are5feetapart(fig.15).Noticethatinthistestsetup

wing liftdistributionand, hence, wing induced
downwash atthelocationofthe tailwere not realis-

ticallysimulated. The wing tips,in tur_, were

I0



mountedon an externalbalance,situatedbelow the

testsection.This allowed a comparison of wake

surveydragmeasurements with balancedrag.

Wake measurements ofupsweep dragofthe 737 are

compared infigure17 with balancedata.Thiskind
ofdragisdefinedas the differenceindrag between

symmetric and upswept aftbodiesatthe same test

condition.As seen,wake drag iswellwithinthe

uncertainty band of the force measurements

providingfurtherdemonstrationfortheaccuracyof
three-dimensionalwake measurements.

Figure 15. Aftbody Drag Test in Boeing Research
Wind Tunnel

Parametricstudiesinvestigatingtheeffectofaftbody

length and upsweep angle on 7-7 fuselagedrag
provided quantitativedata for vortex drag and

profiledrag as functionsofangleofattack(ref.24).

As shown intheexample offigure16,vortexdragof

upswept and symmetricaftbodiesofciviltransports

can be measured in wake surveys with very httle

data scattereven though aftbody vortex drag is

indeedverysmall.
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Figure I7. Upsweep Drag From Balance and Wake
Surveys

Conclusions

The paper describesthe wake surveymethodology

developedatBoeingforthepurposeofmeasuringthe
components ofdragoflow-speed,high-liftconfigura-

tions.Importantelements ofthistechniqueinclud-

ingmechanicalprobetraverserand pneumaticprobe

design,refinement of the underlyingtheory,and

data reductionproceduresare stillunder develop-

ment atthe presenttime. However, the technique

has already been successfullyapphed in several
wind tunnel tests as shown in this paper. The

following valuable features of this measuring
technique should be noted:

_ CY

"1 °°°9 ""- -.o - " "" e" J "- "e a.

Profile I ._' b.

"1 a_body

0.008 --_ c.

"; I I I
-2 0 2 4 6 d.

a ,,, deg

Figure 16. Drag Components of Symmetric and
Upswept Aftbody Configurations

They provide separate measurements ofinduced
drag, profile drag, and lift.

Measurement accuracy and data repeatability
are comparable to balance measurements even
though lift and drag data are the composites of a
large number of individual measurements.

Small increments in individual components of
drag due to minor configuration changes can be
measured accurately.

Spanwise distributions of lift can be obtained.
This is of value in high-lift aerodynamics since
the sm all flap sizes of most high-lift models make
it extremely difficult to measure spanlift data

using surface pressure taps. However, all

11



e.

spanwise wing data measured in wake surveys 7.
should be interpreted with caution since they are
usually distorted to some degree by wake rollup
and, hence, are influenced by practical limita-
tions on the location of the plane in which the 8.

survey is conducted.

Wake surveys provide spanwise distributions of

profile drag and induced drag, which are of value
in diagnosing the effects of local changes to the

configuration geometry.

During each wake survey a large number of
velocity and pressure data are recorded which
can serve as validation data for CFD codes in

addition to providing lift and drag data.
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Abstract _/

Accurate prediction of surface-pres-
sure distributions, merging boundary-

layers and separated-flow regions over
. multi-element high-lift airfoils is re-

quired to design advanced high-lift sys-
tems for efficient subsonic transport

aircraft (Ref. i). The availability of

; detailed measurements of pressure distri-
butions and both averaged and time-depen-

dent boundary-layer flow parameters at

flight Reynolds numbers is critical to

evaluate computational methods and to

model the turbulence structure for clo-

sure of the flow equations. Several de-

tailed wind-tunnel measurement at subsc-

ale Reynolds numbers have been conducted
to obtain detailed flow information in-

cluding the Reynolds-stress components

(e.g. Refs. 2&3).

As part of a subsonic-transport

high-lift research program flight experi-
ments are conducted using the NASA-

Langley B737-I00 research aircraft (see

Figure I) to obtain detailed flow charac-
teristics for support of computational

and wind-tunnel efforts. Planned flight

measurements include pressure distribu-

tions at several spanwise locations,

boundary-layer transition and separation
locations, surface skin friction, as well

as boundary-layer profiles and Reynolds
stresses In adverse pressure-gradient

flow.

In the initial phase of the flight

program, surface-pressure distributions,
skin-friction and flow-visualization

measurements were obtained on the triple-

slotted flap system of the research air-

craft. A range of flap settings for

angles of attack up to stick-shaker speed

were investigated at several flight alti-

tudes, resulting in Reynolds numbers

(based on mean-average chord and freestr-

eam speed) between i0 and 20 million, and

Mach numbers between 0.18 and 0.36. For

the highest flap setting, separated flow
was measured over the vane element as the

aircraft attitude was increased, eviden-

ced by the vanishing skin-friction coef-
ficient obtained from a Preston tube near

the vane trailing edge (Figure 2).

To analyze the flight measurements

and to predict the flow field with suffi-

cient detail for the purpose of instru-

mentation sizing, several widely-used
two-dimensional multi-element methods are

empl_yed for the present geometry, pro-
gress!ng from potential flow/integra_

boundary layer to N.S. methods (Refs. 4,

5, and 6, respectively). Figure 3 pres-

ents the predicted inviscid pressure

distribution obtained from a 2-D panel

method for the five-element airfoil with

a 40 ° flap setting. The paper will com-

pare viscous computational results from
several methods with the measured pres-

sure distributions and skin-friction

values at selected flight conditions.

Large favorable pressure gradients

exist in the leading-edge region of the

slat and the fixed leading edge of the

airfoil (see Figure 3). Relaminarization

(Ref. 7) of the flow from a turbulent
attachment line due to the large flow

acceleration and the possibility for

subsequent crossflow instability and

transition ahead of the laminar separa-

tion bubble can lead to significant

Reynolds-number effects (Refs. 8 and 9).

The paper will present an analysis of the

flow field near the swept edges of the

aircraft using a swept-wing boundary-

layer method (Ref. I0) and boundary-layer

stability theory.
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Abstract

Thin-layer Navier-Stokes calculations

for wing-fuselage configurations from sub-

sonic to hypersonic flow regimes are now

possible. However, efficient, accurate

solutions for using these codes for two-

and three dimensional high-lift systems

have yet to be realized. A brief overview

of salient experimental and computational

research is presented. An assessment of

the state-of-the-art relative to high-lift

system analysis and identification of is-

sues related to grid generation and flow

physics which are crucial for computation-

al success in this area are also provided.

Research in support of the high-lift ele-

ments of NASA's High Speed Research and

Advanced Subsonic Transport Programs which

addresses some of the computational issues

is presented. Finally, fruitful areas of

concentrated research are identified to

accelerate overall progress for high lift

system analysis and design.

I.Introduction

An area of special interest to aerospace

designers is high-lift systems. Future

transport aircraft will have multiple re-

quirements playing important roles in

their design. These requirements include

improved energy efficiency, reduced noise,

and lower maintenance costs. Improved

high-lift concepts for subsonic transports

may result in designs which have increased

section thicknesses, larger aspect ratios,

lower sweeps, optimized multi-component

designs, highly integrated propulsion sys-

tems, and integrated pneumatic concepts

such as circulation control. Conversely,

transports designed for supersonic cruise

typically have geometric characteristics

(highly swept, slender wings) which do not

lend themselves to efficient aerodynamics

at low subsonic speeds and moderate-to-

high angles of attack (flight conditions

associated with takeoff and climb-out).

The need for high-lift augmentation con-

cepts is further accentuated by contem-

porary community noise standards and traf-

fic congestion at Air Traffic Control sta-

tions. While there is ongoing research
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in this area at national research laborat-
ories and private industry, (Brune and
McMastersI provide an extensive review of
computational high-lift design in practice
at industry), a critical need exists for
further innovations. For this to be real-
ized, major breakthroughs in several areas
must occur. From a computational perspec-
tive improved methods are neededto analy-
ze geometrically complex systems and in-
clude key physics, such as flow separa-
tion, transition and turbulence, which
dominate the flow fields. This paper at-
tempts to review someof the issues which
are crucial for computational fluid dynam-
ics (CFD) to truly complement ground and
flight based research and development for
advanced high-lift systems.

Advanced transport designs currently
receiving considerable attention include
configurations designed for supersonic
cruise, such as the High Speed Civil
Transport (HSCT), as well as more conven-
tional subsonic transports. High-lift
systems for subsonic transports, typically

use deflected leading edge slat surfaces

and trailing edge slotted flaps for lift

augmentation, see Figure i. Figure la

shows a relatively simple 3-component sys-

tem consisting of a main element, slat and

single slotted flap configuration which

was tested by Lockheed-Georgia 2. A more

complex system shown in Figure Ib depicts

a double slotted trailing-edge flap in

addition to the slat and main element.

This configuration was tested in the NASA

Langley Low Turbulence Pressure Tunnel

(LTPT)-. Subsonic high-lift systems, when

fully deployed, can have regions of

separation on the siat or flap, or in the

cove regions. The subsonic systems may

also have confluent boundary layers as a

result of the strong interaction of shear

layers. The subsonic high-lift systems

are thus viscous dominated flow fields and

have considerable geometrical complexity.

Computational methods for hlgh-lift sys-

tems must be carefully chosen to incor-

porate these varying requirements in flow

physics and geometry.

High-lift systems for supersonic config-

urations differ from those for subsonic

transport systems both in system geometry

and physics which dominate the flow. In

order to achieve the desired high levels

of supersonic cruise efficiency, many ad-

vanced supersonic configurations employ a

low aspect ratio, highly swept wing. Un-

fortunately, these configurations typical-

ly have poor low-speed performance charac-

teristics. Often, the low speed perfor-

mance characteristics of these systems are

enhanced either by attached flow or vortex

flaps along the wing leading edge. At-

tached flow flaps are designed to suppress

the formation of leading-edge vortices.

Conversely, vortex flaps are designed to

position the leading edge vortex within

the bounds of the flap chord to provide a

component of thrust which results from a

vortex induced suction force. The trail-

ing edge flap system for these configura-

tions may consist of a segmented system of

hinged flaps. Figure 2 shows the

schematic of a low aspect ratio highly

swept wing configuration tested at NASA4;

the leading edge flap segments can be

deflected independently about the hinge

line. The trailing edge flap segments can

also be deflected independently about the

flap hinge lines. Also shown in Figure 2

are schematics of attached flow and vortex

flap concepts. Grid systems to model

these complex, segmented geometries must

be highly versatile. In addition, the

computational methods employed in the

study of high-lift systems for supersonic

configurations must be capable of captur-

ing vortex structures with minimum smear-

ing _ and phase distortion since the nature

of the flow is highly vortical in these

systems.

The problems of high-lift system analys-

is often include such issues as engine

airframe integration and three-dimensional

effects resulting from wing sweep, pylons,

partial-span-flap deflections and tip ef-



fects. These attributes yield extremely
complex geometries and attendant complex,
interactional physical phenomena, while
incremental progress by way of interac-
tional methods or in development of quasi-

three-dimensional analyses is being accom-

plished, we are not confident that such

progress will computationally support in-

novative breakthroughs for future high-

lift system design and development. Low

cost, computationally efficient solutions

(multi-grid, local time stepping) for

three-dimensional steady flows for rela-

tively simple geometries are available

using thin-layer Navier-Stokes codes. We

feel emphasis on these methods will yield

substantial progress toward alleviation of

the two major obstacles to accurate, effi-

cient high-lift system analysis, viz.,

complex geometry and physics. Hence, our

II.Literature Overview

Experimental database

While it is not the intent of this paper

to review the available high-lift research

literature, a brief overview of some sali-

ent reports is appropriate. Among the

published data on multi-element airfoils,
2

Braden, Whipkey, Jones and Lilley report

on a study of the confluent boundary layer

development and separation characteristics

on a NASA GAW-I. The section was equipped

with a 29% chord single-slotted trailing

edge flap and a 15% chord leading edge

slat. Various combinations of slat and/or

flap deflections and angle of attack were

investigated in the study. The report con-

tains surface pressure measurements on the

airfoil as well as lift versus angle of

principal perspective will focus on Navi- attack

er-Stokes solutions. In this paper, we

explore some of the crucial issues which

must be successfully addressed in order to

develop computational methodology to

analyze three-dimensional high-lift sys-

tems.

The following sections present a brief

overview of experimental efforts useful

for code calibration or validation along

with a brief assessment of the computa-

tional state-of-the art. Geometric con-

siderations are addressed within the

context of the implications for grid

generation. Issues related to code

algorithms and dominant physics are

briefly discussed for high-lift system

applicability. Some of the salient

efforts currently being pursued at NASA

Langley are also presented. Concluding

remarks consist of suggestions of major

research areas where coordinated work is

required to sustain progress for

computational high-lift system analysis

and design.

curves for various flap/slat

arrangements. Surface oil flows were used

to provide flow visualization of boundary

layer transition patterns. Boundary layer

velocity profiles, turbulence intensities

and Reynolds shear stresses for the con-

figurations are reported under a separate
5

cover . A supplement to this report con-

tains over 30000 sets of laser velocimetry

(LV) derived boundary layer and wake data

for the various combinations of geometric

arrangements and angles of attack. In

addition, off body flow field data were

obtained using hot wire and LV.

Valerazo, Dominik, McGhee, Goodman and

Paschal 3 have conducted multi-element air-

foil optimization studies for maximum

lift. This is a cooperative study between

NASA and Douglas Aircraft Company. The

primary focus of the study was to discern

the high Reynolds number sensitivities of

the multi-element airfoils at chord

Reynolds numbers up to 16 million. The

high-lift system consists of a double

slotted flap and a single slotted slat as

shown in Figure 2b. Among the data that

are presented is the variation of Clmax

with Reynolds number, the variation of

Clmax with slat gap and the effect of flap



gap on Clmax. NO flow field surveys are

reported from the study. In addition,

there were no mechanisms used in the study

for transition detection.

Olson and Orloff 6 report on the study

of an airfoil with flap arrangement con-

ducted in the NASA Ames Research Center

7 by I0 foot tunnel for Math Number of

0.06 and a Reynolds number of 1.3 million.

Surface pressure measurements, Reynolds

stresses and detailed measurements of mean

Veiocity in the boundary-iayers, wakes and

merging layers are reported. The data

should be considered purely incompressible

and codes with compressible formulations

will have difficulty in simulating this

extremely low Mach number.

Wentz, Seetharam and Fiscko 7 tested an

aileron and a fowler flap applied to a

GAW-I airfoil. The experiment was conduc-

ted a£_M ==0.13 and Reynolds number of 2.2

million. Aileron control effectiveness

and hinge moments are presented for vario-

us gaps from 0 to 2% chord. For the

fowler flap study, pressure distributions

for various flap settings were obtained

for a limited angle of attack range.

Adair and Horne 8 present pressure and

velocity characteristics in the vicinity

of the flap of a single slotted airfoil at

a Mach number of 0.09 and a chord Reynolds

Number of 1.8 million at the NASA Ames

7x10 foot tunnel. They report strong con-

fluence effects on the boundary layer dev-

elopment on the flap suction surface due

to the presence of a strong jet emanating

from the slot flow. The flap is separation

free except at the trailing edge where

intermittent separation is observed. As

a result of this the data may only be of

limited use for steady state calculations.

The flap wake development is reported to

be asymmetric due to strong destabilizing

curvature effects on the suction side.

These data should therefore provide some

guidance for studies of non-equilibrium

effects on turbulence.

Morgan 9 and Morgan and Paulson I0 report

on the study of static longitudinal and

lateral directional aerodynamic

characteristics of an advanced aspect

ratio I0 and aspect ratio 12 supercritical

wing transport model. The model was

equipped with a high-lift system

consisting of a full-span leading edge

slat and partial-span and full-span

trailing edge flaps. The Reynolds number

of the tests varied from 0.97 to 1.63

million over a Mach number range of 0.12

to 0.20. The model was tested at angles

of attack from -4 to 24 degrees and

sideslip from -i0 to 5 degrees. The model

has engin e nacelles, landing gear and

movable horizontal tails. Six basic wing

configurations were tested. These

consisted of cruise (nested case),

partial-span flap, full-span flap, full-

span flap with low-speed ailerons and

full-span flap with high-speed ailerons

with slat and flap deflected to represent

takeoff and landing conditions. Lift,

drag and pitching moment data are present-

ed for various cases.

Nakayama, Kreplin and Morgan II report

detailed flow field measurements for a

three-element airfoil with a conventional

slat and single slotted flap. Reynolds

stress distributions and mean flow

measurements are presented on the main

element and in the flap and wake regions.

These suggest strong confluence effects in

the flap region involving a Jet-like

stream from the flap-airfoil gap, the wake

region of the main element with slat and

the boundary layer on the flap itself.

The above cited works provides some data

for code calibration or validation.

However, there are large voids in the data

base and measurements are not in suffi-

cient detail to understand the complex

flow physics that a computational study

seeks to model. The flow in the gap

region and pressure sides of many of these

configurations needs to be documented



fully. There is also a need to obtain
s r rt

turbulent fluctuations data (u , v , u v ),

transition location and mapping of flow

confluence. Further studies in this area

must be designed to closely follow the CFD

needs to construct proper turbulence

models and flow modules for Reynolds

averaged Navier-Stokes calculations.

Computational database

Brune and McMasters I provide an excel-

lent review of existing computational met-

hods for analysis of high-lift systems.

The status of these methods can be summar-

ized as follows: there are presently no

truly three-dimensional CFD methods for

high-lift studies. Most three-dimensional

studies use quasi-three-dimensional vis-

cous approaches such as three-dimensional

inviscid codes coupled with two-dimension-

al boundary layer codes. Existing vis-

cous, two-dimensional airfoil codes can

be classified, according to Ref.l, as, (1)

Coupled Attached-Flow Methods, (If) Coupl-

ed Separated-Flow Methods, (Ill) Navier-

Stokes Methods and (IV) Design and Optimi-

zation Methods. Categories (I), (I!) and

(IV) are widely used in industry today,

while Category (III) is considered to be

at the developmental stage. Both the at-

tached and separated flow methods (Catego-

ry (I) and (II)) are based on interaction-

al boundary layer approaches while the

Design and Optimization methods are clear-

ly a patchwork of methods (I), (II) and

simple inviscid analyses. In category

(I), a boundary layer method is coupled to
..... 12, 13 14

an inviscia z±ow ca±cu±ation ' and

in (II), some form of modelling of the

separated region is attempted 15'16'17. The

attached flow methods provide good agree-

ment for lift at 10w angles of attack,

where there is no flow separation. The

separated flow models have been successful

for some cases to compute maximum lift up

to stall. These methods are at best use-

ful in a limited fashion and do not

promise to provide a successful methodol-

ogy for high-lift system design. There

are also a few applications of two-dimen-

sional Navier-Stokes solvers for high-lift

configuration analysis in the literature.

Schuster and Birckelbaw 18 and Shima 19 have

obtained two-dimensional Navier-stokes

solutions for multi-element airfoil sys-

tems using patched structured-grids.

Using an unstructured-grid solver, Mav-

riplis and Martinelli 20 have also obtained

solutions of two-dimensional multi-element

airfoils. This work may well be a

bellwether for high-lift system

computations.

III.Geometrical Considerations

Complex geometry issues associated with

high-lift system analysis are non-trivial

to say the least. Even when the problem

is simplified to a wing with deflected

surfaces (disregarding pylons, engines,

flap track fairings, etc.), the task of

surface modelling and field discretization

is formidable. Geometries which are dis-

continuous in the streamwise and spanwise

directions offer a significant challenge

to the CFD community. Within these dis-

continuous regions flow interactions are

occurring which can have significant and

dominant effects on the resulting flow

field. An example of this is the vortical

flow occurring at the edge of a partial

span leading-edge flap as it is deflected

on a highly swept wing. The following

sections address in some detail the manner

in which CFD code developers are address-

ing these issues. From the structured

grid perspective, single block, multi-

block and Chimera schemes are each addres-

sed. The promising work going on in the

development of efficient unstructured grid

generation techniques is also discussed.

Finally, zonal methods are addressed in-

cluding an example of their applications.

Structured-grid solvers

(a)Sinqle and Multi-block methods

The rapid progress in CFD of the last



decade has made it possible to analyze
simple wing-body geometries with relative-
ly little effort. This is due, in part,
to efficient grid generation techniques
and acceleration techniques such as mesh
sequencing, local time stepping and multi-
grid techniques. Structured-grid al-

context of two-dimensional flows. Using
a structured-grid solver as the base code,
Schuster and Birckelbaw 18 developed solu-
tions for the multiple element airfoil
problem by a multi-block approach using
two-dimensional Navier-Stokes solutions.
Figure 3 showsthe schematic of the multi-

gorithms, such as TLNS3D21'22'23and ple-block grid topology used by them for
CFL3D24, have shown that for many steady a two-element airfoil. Figure 3a shows

flow problems, efficient solutions are

possible using muitigrid acceleration

schemes. However, for the multi-element

problems, the single block structured sol-

vers are difficult to use. Fortunately,

multi-block versions of these codes are

currently being developed. These multi-

block solvers may have the power to

analyze complex domain problems by break-

ing the flow domain into smaller sub-

domains or blocks of individual grid

topology (such as grid system for each

component of a multi-component system).

The appropriate set of flow equations in

each of these blocks can then be solved.

Another significant development is the

availability of powerful new grid genera-

t'ion packages which in the hands of

experienced users can be used to do vir-

tually any type of gridding (C-O; C-H; C-

C) with relative ease. Among the most

promising grid-generation packages are

GRIDGEN 25 and EAGLE 26, These are both

user-friendly packages for generating two-

dimensional and three-dimensional struc-

tured volume grids for finite volume

analyses. Single or multi-blocked grids

may be generated using these packages.

The grid systems that may be constructed

in the multi-blocks may or may not have C O

(common grid points) or C 1 continuity

(slope continuity as well as common grid

locations) at the interface of these

blocks. Depending on the nature of these

interface conditions many variations of

boundary coupling between various blocks

are possible.

Previously, the utility of using

structured-grid solvers for multi-element

airfoil cases has been explored in the

the arrangement of the various blocks in

physical space and Figure 3b shows the

arrangement in computational space. The

line marked S is a line of singularity

where all three blocks intersect and it

requires special connectivity relations.

The composite grid in Figure 3c is ob-

tained by an iterative approach such that

the grid systems in the regions retain C °

continuity at the block interfaces, The

flow solver used in Ref.18 is a modified

ADI scheme closely related to the Beam-

Warming algorithm and the turbulence model

used in the calculations is the Baldwin-

Lomax model. Schuster and Brickelbaw ob-

tain a reasonable comparison of C 1 with

experimental data at angles of attack up

to stall as can be seen from the lift ver-

sus angle of attack curve shown in Figure

3d. They also state that their solution at

the stall angle and beyond did not con-

verge to a steady state solution. The

curve shown by the dotted line in the fig-

ure is an average of the oscillatory solu-

tion. The Cp predictions on the main ele-

ment obtained by them (not shown here)

indicate some systematic variations from

experimental measurements, the cause of

which was unknown.

Shima 19 also obtained Navier-stokes

solutions for a multi-element airfoil sys-

tem using a patched grid system. The grid

generation for the multiply connected

domain in this work is again a non-trivial

problem. Here, the composite grid is

obtained in a two-step process. Initial-

ly, a potential flow solution around the

multi-element airfoil is generated using

a panel method. Next, conventional grid

generation techniques 27, using finite-dif-



ference methods, are employed where the
computational co-ordinates are now the
knownpotential and streamfunctions around
the multi-element airfoil. This allows
control of grid spacing required for the
Navier-Stokes solutions near the body.
The flow solver in Ref.19 uses an upwind
(Total Variation Diminishing or TVD) sche-
me modified for low Mach number applica-
tions. Computedsolutions are comparedto
experimental measurementsof Foster, Irwin
and Williams 28. The results obtained for
a two-element configuration (consisting of
main element and flap) are shownin Figure
4 reproduced from Reference 19. The agre-
ement between experimental data and com-
putations for C1 is reasonable; the stall
angle of attack predicted from the solu-

tion by the averaging method similar to

that used in Reference 18 is under-predic-

ted in the calculations. The authors pos-

tulate that this could be a result of num-

erical problems. The results for stall

and post-stall cases are once again suspe-

ct since they are obtained by averaging an

oscillatory solution obtained by the com-

puter simulation.

While these results for two-dimensional

cases suggest the utility of multi-block

systems for high-lift analysis, further

research is required to establish the usa-

bility of such methods for a highly com-

plex three-dimensional configuration. For

three-dimensional applications, the multi-

block methods with rule based expert sys-

tems may provide a natural way for genera-

ting structured grids for analysis. Dan-

in the narrow regions of flow passage aro-

und the multi-element airfoil case, may

limit the use of these methods for 3D-

high-lift analysis. The complexity of the

grid-generation and flow solver may also

have some bearing on their eventual accep-

tance.

(b)Overlappinq Grids/Chimera Schemes

In addition to the multi-block method,

grid overlapping methods are another com-

monly used technique for domain decomposi-

tion. In overlapping schemes the sub-

domains and the grid systems associated

with them may overlap, or it may be pos-

sible to embed one sub-domain completely

in another. In the "chimera scheme "30,

the regions of a grid common to others is

removed thereby creating voids or holes
31

inside the grid. Baysal et. al. , have

looked at the quality of chimera solutions

by studying the solutions with and without

embedding for a test problem and conclude

that there are only "minor" differences

between the solutions. If this is true,

chimera schemes may offer the flexibility

to study multi-element airfoil flows. An

example of a chimera grid developed at

NASA Langley Subsonic Aerodynamics Branch

for the GAW-I airfoil with a deployed slat

is shown in Figure 5. Figure 5a is an

example of a sub-domain which consists of

the slat geometry. Each sub-domain (see,

Figure 5a,b) contains a "hole" or void in

it which is a region of overlap of another

sub-domain. The void is identified for

each sub-domain in a preprocessing step.

nenhoffer 29

such a system for two-dimensional multi-

body configurations. With elements in

close proximity, the nature and quality

of such grids and their resultant sensiti-

vity to overall flow solution need to be

examined closely. Many of the finite vol-

ume structured solvers are highly sensi-

tive to grid quality. The inability of

these methods to provide reasonable simul-

ations in regions where the grid may be

highly distorted and stretched, such as,

discusses the development of The solution strategy for the composite

flow field involves computation of flow

fields in each sub-domain with the associ-

ated boundary values including those for

the boundaries of the void region. Since

the boundary values for the voids are gen-

erated iteratively (by solutions from the

sub-domains that create the voids),

convergence of these methods depends

strongly on how well the boundary values

are approximated.



Figure 6 showsEuler solutions obtained
by Biedron32 using CFL3D employing an
overlapped grid option for an airfoil with
a slat. The calculated conditions are at
M_0.5 and _ = 7.5°. These excellent
results suggest that the overlapped grid
option may be exploited to generate grid
structures over multi-component airfoils.

An important advantage of the chimera
schemeor the overlapped grid methods is
the relative ease with which structured-
grids can be generated around "simple"
sub-domains of a complex three-dimensional33
domain. Buning, Parks, Chan and Renze
describe the application of a chimera
scheme_for the space shuttle ascent
geometry. The component grids were
generated using a hyperbolic grid
generation technique which is faster than
elliptical grid generators. Due to the
complexity of the geometry, the grid
joining process does become somewhat
involved at the intersection of

geometrical components. Further

innovation in the form of "collar grids ''34

were required to develop solutions for the

shuttle ascent geometry. An example of a

"collar grid" for a cylinder intersecting

a curved surface is shown in Figure 7 (re-

produced from Ref.34). Figure 7a shows the

combined collar surface grid. The white

region in the figure is the void in the

cylinder and the plane surfaces. The col-

lar grid separates the intersecting sur-

faces and acts as a transitional zone bet-

ween them. Figure 7b shows a slice of the

collar grid and the chimera grids around

it_

The overlapping schemes and in

particular, the chimera scheme provide a

simple way to generate computational

grids. However, further study is required

to sort out any sources of error in such

an approach before recommending these

methods as a panacea for high-lift system

analyses. Buning et.al. 33 point out that

while the accuracy of their solutions im-

proved with improved modelling of the geo-

merry, the accuracy required for wing

loading analyses is significantly higher

than obtainable with chimera schemes.

Effective use of chimera is also limited,

according to them, by difficulties for the

scheme in implementing turbulence models

based on length scales for multi-body con-

figurations.

Unstru_tured-qrid methods

Navier-Stokes solvers using unstruc-

tured-grids (triangular, tetrahedral mesh-

es) are relative newcomers to the field.

While finite element methods using trian-

gular and quadrilateral and tetrahedral

elements have been used in the past, their

applications have been limited to low Rey-

nolds number flows. Mavriplis 35, Mav-

riplis and Martinelli 20 and Mavriplis and

Jameson 36 have led the way in developing

viable solutions to flow over airfoils.

The implementation of multigrid strategy

and turbulence modelling for the two-dime-

nsional cases are major assets to the flow

solver used in Reference 20. At present

several multi-component flows have been

calculated using this version of the code

and good agreement with experimental data

has been obtained for many of these cases.

For example, Reference 20 documents

solutions of multi-element airfoils which

show excellent agreement with experimental

data using a two-equation (k-£) model.

The advantage of using unstructured-

grids for analyzing high-lift systems is

obvious. They are capable of properly

modelling all the geometric complexity as-

sociated with high-lift systems in a

straightforward manner. Figure 8 shows an

unstructured-grid system developed at Sub-

sonic Aerodynamics Branch (SAB), NASA Lan-

gley Research Center, for the study of a

fully deployed low speed multi-element

airfoil. An important merit of these

methods is the ease and ability to adapt

to an evolving solution. By using Delaun-

ay triangulation techniques, the re-gridd-

ing in the region of interest can be



carried out in O(N3/2) operations for 2-D
5/2

applications and in O(N ) operations for

3-D applications.

While the unstructured-grid techniques

offer ease of grid generation and grid

adaptation, the solvers used in these

methods do not appear as computationally

efficient as the structured-grid solvers.

Indeed, comparisons have found them slower

by a factor of 3 to 4 for many test
37

cases (the estimate given is for a 2-D

code here; the estimate for 3-D viscous

flows is much worse for the same accuracy;

see for example the timings given in Ref.

21 for viscous calculations). The

relative merit of such comparisons is

somewhat suspect, since these test

problems have no geometrical complexity

and thus belong naturally in the domain of

structured-grid solvers. The unstruc-

tured-grid methods do provide the power to

analyze complex flow problems that are

difficult to analyze using structured-grid

solvers. Thus the development of unstruc-

tured-grid technology is receiving con-

siderable attention and is progressing

rapidly at various laboratories.

However, many major hurdles remain to

be overcome before we have available a

good three-dimensional unstructured-grid

solver for viscous flows. The most sig-

nificant of these hurdles is related to

the directional sensitivity of the viscous

flows. While the triangulation or tetra-

hedral domain discretization does not have

a preferred orientation, flows with boun-

dary layers do have directional sensitiv-

ity (i.e, boundary layers grow normal to

the surface). Hence, some directivity

needs to be introduced into the grid

generation(non-Delaunay and hence more

time consuming) and solution algorithms

(background grids for turbulence, genera-

tion of many levels of grid for multi-grid

implementations, etc.). Thus, while the

Euler solver implementation is rather

straightforward for the unstructured

meshes, the implementation for high

Reynold nun_er viscous flows offers a sig-

nificant challenge. At present, this com-

plexity seems to be the stumbling block in

extending these methods to three-dimensio-

nal viscous flow problems. Obviously, new

development in this area needs to occur.

Zonal Methods

In zonal methods, the computational

domain is divided into sub-domains where

grids are patched together. A dis-

criminating feature of these techniques

relative to mult i-block or chimera

schemes is that the sub-domains may have

varying degrees of latitude in the

modelled physics. Normally, the zonal

boundaries will be two-dimensional

surfaces and they will have to be regular.

The zonal approach offers the ability to

properly model the physics through

solution approximation valid to

particular zones. For example, a fully

elliptic flow problem may be solved using

a zonal method where the flow regime may

be approximated by a parabolic system of

equations in a large zone and by the full

elliptic system in a smaller zone.

Depending on the size of these domains a

large savings in computational resources
38

may occur. Sankar, Bharadvaj and Tsung

use a zonal approach employing a full

Navier-Stokes solution zone embedded in an

outer potential flow field to study an F5

wing and an isolated helicopter rotor in

hover. They show a savings of roughly 50%

in computational time over full Navier-

Stokes solutions for similar accuracy.

From the perspective of high-lift system

studies, zonal approaches offer pos-

sibilities that are yet to be fully explo-

red. Using zonal approaches, it may be

possible to couple structured-grids with

unstructured meshes to develop a flexible

approach to three-dimensional problems.

Another application of this technique may

be in the analysis of separated flows,

where the thin-layer approximations may

break down and a full Navier-Stokes solu-



tion maybe required in somezones of the
flow field. Such an approach has the pot-
ential for generating a computationally
efficient and accurate prediction method.

IV. Alqorithmic Issues

Differencinq schemes

• There are several issues related to

algorithms for high-lift studies that need

to be examined, upwind schemes which per-

form very well for supersonic flows have

been known to perform rather POorly for

low subsonic flows 39 Central difference

schemes, which work well for subsonic

flows do depend to a degree on clrefully

tuned artificial dissipation to stabilize

calculations (blended second and fourth

order dissipations, residual smoothing,

etc.). However, for subsonic flow cal-

culations the central differencing al-

gorithm is probably the most well behaved.

The accuracy of these two schemes should

be studied on prototype problems by sys-

tematic application. Based on the outcome

it may turn out that one particular solu-

tion algorithm is more suitable than the

other for a given configurational

analysis. An unstructured-grid algorithm,
• 36

for example Mavriplis , which uses

central differencing schemes may be more

suitable for subsonic configuration studi-

es, while other unstructured-grid solvers

such as that by Batina 40 and Frink 41 which

use upwind-based schemes may be more

suited for vortical flows. It is possible

that no single scheme (central difference

/ upwind scheme) will be appropriate for

all cases. For example, consider the low

aspect ratio, highly swept wing case.

Here an upwind based scheme with

controlled dissipation (e.g., TVD schemes)

should predict the formation of vortices

and their evolution in space more ac-

curately than the central difference

method where some smearing of the vor-

ticity may occur due to added dissipation

in most models.

For unstructured-grid solvers, there are

other issues related to their speed and

accuracy that need to be fully explored,

such as, whether vertex based or cell

centered schemes are the most appropriate

for the solver. The formal accuracy of

these methods depends to a large degree on

the particular reconstruction method chos-

en. Cell vertex schemes are more economi-

cal for three-dimensional (tetrahedral

elements) unstructured grids 42, while cell

centered schemes are more robust compared

to cell vertex schemes 43. Efficient cell-

centered schemes for three-dimensional

problems are possible with tetrahedral

elements as demonstrated by Frink 41. There

are also approaches which combine vertex

based schemes with cell-centered approach

for integration of fluxes (see Reference

43). The computational efficiency and

accuracy of these approaches must also be

examined in detail. Lomax 44 suggests that

there needs to be a further examination of

special forms of structured grids in 2D

and 3D to serve as a means for under-

standing and evaluating unstructured grid

solvers and their formal accuracies.

While many of these issues will be con-

sidered by code developers, the applied

scientist working on high-lift system

studies will probably be involved in

developing methods and grids that will

support solving flow fields around con-

figurations with considerable geometrical

complexities. It is quite conceivable

that the most useful approach might be one

that incorporates hybrid techniques. An

example of this approach is a multi-zonal

scheme employing hybrid computational al-

gorithms, grid structures and/or flow

equation models for the high-lift system

configurations.

Flow phvsics

Progress in computational methods for

high-lift systems strongly depends on the

ability to model turbulence, and predict

transition, flow separation and reattach-



ment. For subsonic transport systems, in
deployed high-lift situations, there may
be cove, leading-edge slat, trailing-edge
flap or main element flow separation. In
some of these cases, the separated flow

may be a massive shear layer which inter-

acts with a boundary layer developing on

an element downstream. The current state

of the art in CFD does not address mas-

sively separated flows adequately. This

deficiency leaves CFD yielding rather im-

potent analyses for high-lift systems as

a result of the inability to predict where

the flow begins to break down.

run in the tripped mode. That is, if the

location of transition from the laminar to

turbulent state is known, the code will be

able to compute non-zero eddy viscosity in

the turbulent region. Even this approach

is inherently deficient since the initial

evolution of turbulence (10w turbulent

Reynolds numbers, RT< 500) is not properly

modeled by existing turbulence models.

An improved understanding of transitional

boundary layers and transitional zonal

modelling is clearly needed. Narasimha 47

advocates using a semi-empirical approach

to the problem.

There are also other important flow The other problem .relates to the actual

physics which CFD is at present unable to turbulence modelling itself. Menter 48

address. For example scale effects for evaluated the performance of four popular

high-lift systems do not show a consistent turbulence closure models for flows under
45

pattern These anomalies are difficult adverse pressure gradients. The Baldwin-

to simulate computationally as a result of

the significant computational resources

required to compute flow conditions at

flight Reynolds numbers. Relaminarization

is a phenomenon which often occurs on the

main element of a high-lift system in the

influence of a deployed slat. This results

as the flow on the main element ac-

celerates around the leading edge due to

extremely favorable pressure gradients at

high Reynolds numbers 46. Viscous wake

interactions is another area requiring

further insightful studies.

There are also areas that require im-

mediate attention from a computational

viewpoint. For example, the status of

turbulence modelling for aerodynamic flows

is rather primitive. There are two types

of problems to be addressed here. One in-

volves a limited understanding of transi-

tional flows and boundary layers and the

other is the inability to properly model

turbulence. As a result of the inability

to predict transition, calculations are

often run in full "laminar" or " tur-

bulent" options for many code comparisons.

However, most experimental data are ob-

tained for mixed laminar/turbulent flow

fields. Some codes such as TLNS3D can be

Lomax, Johnson-King, Baldwin-Barth and

Wilcox's k-wmodels were implemented in an

incompressible Reynolds-averaged Navier-

Stokes solver (INS code). Menter conclud-

ed that "the three non-equilibrium models

gave significantly better results than the

algebraic Baldwin-Lomax model" under stro-

ng adverse pressure gradients. Con-

clusions, which are not discussed here,

were also presented relative to the per-

formance of the three models. The authors

feel that similar rigorous studies are

crucial to understand the performance of

these and other proposed turbulence models

for multi-component airfoils and wings.

In addition, we feel for multi-element

airfoil and wing problems, turbulence mod-

els based on length scales are more likely

to fail since the choice of the ap-

propriate length scale is difficult to

identify. Complex turbulence models which

do not depend on length scales may be the

only answer. Even after solving the

length scale problem, experience with many

higher moment methods has been that their

performance may not be that attractive

considering the additional complexities

they introduce, see the discussion by Lum-

ley 49 as well as the comparison of various



turbulence models conducted in the AFOSR-
5o

Stanford Turbulence Meeting

However, there are some promising new

developments in turbulence modelling, such
51

as, second-order closure and the Re-Nor-

malized Group (RNG) based models 52, that

have appeared over the horizon. Results

obtained using RNG methods are compared in

Figure 9 (reproduced here from Reference

52) with those using Baldwin-Lomax model

for the RAE2822 airfoil case. Figure 9a

presents the results obtained using RNG

model and Figure 9b presents results ob-

tained using Baldwin-Lomax model. Note

that the KNG solutions improve the predic-

tion of the shock structure relative to

the Baldwin-Lomax model both in shock lo-

cation and strength. This model has und-

ergone further developments since that

time and appears to be ready for ap-

plication to two and three- dimensional

solvers of multi-component configurations.

For example, a modified RNG k-E formula-

tion $3 has been shown to produce excellent

agreement for the classical backward-

facing step problem which all of the other

turbulence models in use have difficulty

in predicting (see Reference 50 and the

discussions pertaining to the backward

facing step pp 275-283; pp 886-911). K

notable feature of the RNG formulation is

that the model constants are not ad hoc

and are derived by a consistent perturba-

tion analysis of the Renormalised Navier-

Stokes equations. These models may provi-

de an avenue to improve the prediction for

high angle of attack problems where the

effects of turbulence are much more

pronounced. As more and more reliance is

placed in optimizing configurations for

maximum lift to drag ratios or minimum

drag, we wil be forced to examine in

detail the agreement that these Navier-

Stokes codes provide for integral

quantities.

V.Onqoinq work

The high-lift elements of NASA's High

Speed Research (HSR) and Advanced Sub-

sonic Transport Program have provided the

impetus for several significant high-lift

efforts at Langley Research Center. The

elements consist of a balanced experimen-

tal and computational research program.

Experimental work supporting the HSR

Program involves testing a series of con-

figurations with different types of lead-

ing-edge high-lift devices (attached flow

and vortex flaps) and planform variations

(different leading edge sweeps and aspect

ratios). Data obtained in these tests

include force and moment, surface pressure

and flow visualization. A complementary

computational program is being _ursued to

study the grid generation tools and com-

putational methods required to analyze

this class of vehicle. Due to the comple-

xity of modelling the three dimensional

high-lift system, the init'ial CFD effort

concentrated on gridding and analyzing

geometries with undeflected leading-edge

devices. Once the cruise geometry is suc-

cessfully analyzed the next step will be

to analyze the high-lift configuration.

Figure 10a is an example of an HSCT con-

cept that was designed for a cruise Mach

number of 3.0. This design consists of a

blended wing body with a flattened or "pl-

atypus" forebody. The configuration was

analyzed by Victor Lessard of vigyan with

the multi-block version of CFL3D24(a thin

layer, upwind N-S code). Figure 10b shows

a comparison of the surface pressure dis-

tributions obtained computationally with

results obtained in the 8-foot Transonic

Pressure Tunnel at NASA Langley. The com-

parisons shown are for two cross sections

on the configuration. The first is near

the nose and the second is Just upstream

of the wing crank. Both comparisons show

excellent agreement between the

computations and experiment. The pressure

peaks indicative of vortex flow are well

captured by the analysis. Due to the

agreement between theory and experiment

obtained on this and other cruise

geometries, we feel the method will prove

useful for analyzing simple three-



dimensional high-lift systems such as
full-span attached flow flaps.

Another CFDeffort that is being pur-
sued by Kevin Kjerstad of NASALangley in
support of the HSRProgram includes evalu-
ation of the three-dimensional unstructur-

ed grid generator and Euler code developed

by Frink, et a141. The grid generation

method is based on the "advancing front

technique" and uses a structured back-

ground grid to ease implementation of the

grid generation process. An example of an

unstructured grid generated for a generic

high speed research configuration is shown

in Figure lla. The Euler solver, known as

USM3D, is an upwind scheme developed for

solving the three-dimensional Euler equa-

tions on unstructured tetrahedral meshes.

The code uses a cell-centered, finite-

volume formulation with flux-difference

splitting for spatial discretization.

Experimental and USM3D results on the

generic configuration at subsonic speeds

for lift, drag and pitching moment are

compared in Figure llb. Since the model

has a sharp leading edge, the point of

separation for the primary vortex is well

defined and the Euler results should be

reasonable. The comparisons in Figure llb

show excellent agreement between theory

and experiment for all three quantities at

the three angles of attack analyzed. The

next step is to use the codes to analyze

a three-dimensional high-lift system. The

vortex flap concept is a good candidate

for analysis since it has a sharp leading

edge, hence, the separation point is known

a priori. This configuration will be ana-

lyzed in the near future.

One of the efforts supporting the Ad-

vanced Subsonic Transport Program at NASA

Langley involves assessing the capability

of various computational techniques for

high-lift system application. We are cur-

rently involved in assessing the capabili-

ty of a structured-grid solver (TLNS3D)

to predict the subsonic characteristics of

a standard low-speed airfoil (GAW-I) at

angles of attack up to Clmax. This solver

is a transonic code with a central differ-

encing scheme, that can be run with either

the Baldwin-Lomax or the Johnson-King tur-

........ model. Experimental data for a

GAW-I airfoil obtained by McGhee and Beas-

ley 54 has been chosen for computational

studies. This particular airfoil has geo-

metrical characteristics (thick airfoil

section with blunt trailing edge) which

can pose problems for a grid sensitive

algorithm. Tests were conducted between

Mach numbers of 0.10 to 0.28 and angles of

attack from -10 ° to 24 o . The low Mach

number data at M=0.15 has been chosen by

us to study the robustness of the transon-

ic structured-grid code. For the experi-

ments, transition was fixed at 8% chord

and the solver has the capability to com-

pute laminar calculations up to this loca-

tion and thereafter, switch to a turbulent

calculation. The results presented below

are only for the Baldwin-Lomax model since

the performance of the Johnson-King model

was affected by grid quality for this par-

ticular geometry. Figure 12 shows the Cp

comparison between experimental measure-

ments and computation using the Baldwin-

Lomax turbulence model in TLNS3D. Com-

putations employing the Johnson-King model

were adversely affected by grid quality

for this particular geometry and are not

presented here. The agreement between the

computed solution and experimental data is

extremely favorable up to 8° angle of

attack. Beginning at 12 ° , the computed

pressure distributions show differences

with experimental data at the trailing

edge region. These differences become

progressively worse at higher angles of

attack. At 12 ° and beyond, it was noted

by the experimenters that there was

trailing edge flow separation which became

progressively larger with angle of attack.

The computed wall shear stress data as

well as Mach contour plots (not shown

here) do indicate trailing edge flow

separation at 12 ° which becomes progres-

sively worse at higher angles of attack.

The degree and extent of agreement between



experiment and theory in this separated
zone is suspect since the included physics
is deficient e.g, thin-layer approximation
which breaks down in the vicinity of
separation point (no streamwise viscous
stress variation) and the turbulence model
(Baldwin-Lomax model) used. The com-
parison of sectional lift versus angle of
attack (Figure 13) shows that the lift is
predicted rather well by the code up to an
angle of attack of 18°, indicatingthat
sectional lift is insensitive to the minor
differences in pressure distribution
observed. The drag comparison (Figure 14)
showsthe predictions are only accurate up
to an angle of attack of 8° . Obviously,
minor differences that are observed in
pressure distributions have a larger
influence on Cd than CI. Since, lift to
drag ratio issues may dominate future
system designs, the challenge to code
validators is obvious.

55Bonhaus, Anderson and Mavriplis are
using the unstructured-grid solver of Mav-
riplis to analyze multi-component airfoils
for subsonic transport applications. The
experimental data used in this comparison
is from a Douglas four element configura-
tion tested at the Langley LTPT tunnel.
The computed pressure distribution over
the elements have been compared against
experimental data for angles of attack of
0, 12, 18 and 20 degrees. These results
were obtained using the Baldwin-Lomax tur-
bulence model. The agreement between ex-
perimental data and computations are ex-
tremely good up to Clmax. At 0 degree ang-

le of attack, (not shown here), the big-

gest difficulty is in predicting the slat

pressure distribution in the cove region.

At higher angles of attack, the computed

results agree very well with measurements

on the slat surface, while the prediction

is off from experiment in the auxiliary

flap as can be seen from Figure 15a. At

20 degree angle of attack, Figure 15b, the

disagreement is quite pronounced for both

the main and aft flap indicating the wake

viscous interactions are not fully cap-

tured by the code. Figure 16 shows the

lift vs angle of attack curve. Again, the

predictions are in good agreement with

experiment up to Clmax. Beyond Clmax , the

computed lift curve shows an increase in

lift with angle of attack, demonstrating

the inability of the method to predict

stall behavior.

Previously in this paper discussions and

examples of grids for multi-element air-

foils have been presented. As has been

stated, the gridding and analysis of a

three-dimensional high-lift system is

quite difficult. The grid generator and

Euler code described above (Reference 41)

were used by Dr. Mohammad Takallu of Lock-

heed and Dr. Simha Dodbele of Vigyan to

study a multi-element wing. The wing

chosen was a unswept, semi-span wing

consisting of a main element and full-

span, double slotted flap. The surface

grid on the configuration and part of the

symmetry plane mesh is shown in Figure 17.

Even though this geometry is complex, the

grid generation process was relatively

straight forward. As data become avail-

able, the results of the Euler analysis

will be evaluated to determine the utility

of the code for high-lift configuration

analysis for attached flow conditions.

Another difficulty with high-lift system

design and analysis is the proximity of

the ground and the effect this has on the

flow field surrounding the configuration.

Often there is a significant effect on

lift due to the interference of the wing

flow field and the ground. Figure 18 is

an example of an unstructured grid develo-

ped by Kyle Anderson of NASA Langley for

a multi-component airfoil in ground ef-

fect. The airfoil is placed in the proper

orientation above the ground and then the

grid is generated using Delaunay trian-

gulation techniques. The ground is simu-

lated by adding a zero transpiration

boundary condition to the boundary below

the airfoil. To analyze other ground

heights for this same airfoils, the grid



must then be regenerated with the airfoil

placed in its new position. Due to the

adaptability of unstructured grid genera-

tion techniques, this requires relatively

little input by the researcher.

Ground effect analysis can also be done

using a structured grid approach. Fig. 19

is an example of a structured grid gen-

erated by Dr. Steve Yaros of Langley for

a National Aerospace Plane (NASP) type

configuration in close proximity to the

ground. In this case the analysis was

done using a Navier-Stokes code; so a no

slip boundary condition was imposed at the

wall. Again,to analyze the configuration

at different ground heights requires rege-

neration of the grid. For this simple

geometry in Figure 19 the process is stra-

ightforward. However, for more complex

configurations, generating new multi-block

grids could be time consuming.

vI. Future Plans

Based on the discussions above it is

possible to identify several areas where

further coordinated work is needed.

(i) Generation of a data base that can be

used for developing models of flow physics

for computer simulation. This requires

the generation of detailed L-V data, shear

stress, energy and fluctuation measuremen-

ts. These measurements pose a significant

challenge for multi-component airfoils

where there are narrow regions of flow.

A systematic effort should also be made

to compare computed solutions using heuri-

stic models with existing data bases.

(ii) Further research is necessary to dev-

elop three-dimensional structured and un-

structured-grid generation techniques and

development of hybrid (zonal) methods for

viscous flows. Intelligent use of an ex-

pert system may allow development of effi-

cient three-dimensional blocked grids for

geometrically complex configurations.

(iii) A concerted effort should be made to

develop new turbulence models for separat-

ed flows and to test these models in flow

codes. There are few and relatively poor

performing turbulence models for separated

flows currently available. Progress made

in this field is bound to provide rich

rewards. There are currently several

good candidates such as the model of

Wilcox 56, RNG models, and second order

closure models, that need to be validated.

(iv) The need for co-ordinated efforts

between industry and government laborator-

ies needs to be addressed. With such vast

areas of research to be done, a collabora-

tive industrial-government consortium

would serve to reduce duplication of data

and effort at this critical juncture.
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(a) Slat and single slotted flap (Ref.2)

(b) Slat and double clotted flap" (Ref.4)

Figure 1: Examples of Multi-component

Airfoil Configurations for Subsonic

Transport Kigh-lift Studies.

|a|A.ached t_l_ nap _o|Vo.e* _ow flap

Figure 2: Schematic of a low aspect

ratio highly swept arrow %ring con-

figuration with leading and trailing

edge segmented flaps.
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(a) Grid with Pressure Contours

(a) Slat grld with hole

_.._.._; (b)

(b) Main grid with hole

Cp

".5

(c) Composite grid

Figure 5: Chimera grid for a GAW-I

airfoil with deployed slat.
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Figure 6: Euler solutions for an alr-

loll with slat at angle of attack,
32

a = 7.5" and M - .5 from Biedron.

The calculatlons were obtained using

CFL3D overlapped grid option.
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grid" for a cylinder intersecting a

curved surface; (A s_mplifted model

of the Shuttle External Tank and

liquid hydrogen feed l_ne) from Ref.

34. (a) Combined collar surface

grid; (b) Slices of the completed

collar grid.



(a) RNG Turbulence Model (b) Baldwin Lomax Hodel
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Figure lla: An unstructured grid

for a generic high speed research

configuration.
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Figure 17: An example of a three-

dimensional unstructured grid sys-

tem for a semi-span high lift ving.



Figure 18: Unstructured grid for a

multi-component alrfoll in ground

effect study.
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Figure 19: Cross section of a struc-

tured multi-block grid system for a

high speed configuration in ground

effects studies.
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UNSTEADY TRANSITION MEASUREMENTS

ON A PITCHING THREE-DIMENSIONAL WING

Peter F. Lorber and Franklin O. Carta

United Technologies Research Center
East Hartford, CT 06108
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ABSTRACT

Boundary layer transition measurements have been

made during an experimental study of the aerodynamics of

a rectangular wing undergoing unsteady pitching motions.

The wing was tested at chordwise Mach numbers between

0.2 and 0.6, at sweep angles of O, 15, and 30', and for

steady state, sinusoid:d, and constant pitch rate motions.

The model was scaled to represent a full size helicopter rotor

blade, with chord Reynolds numbers between 2 and 6× I0 e.

Sixteen surface hot film gages were located along three span-

wise stations: 0.08, 0.27, and 0.70 chords from the wing tip.

Qualitative heat transfer information was obtained to iden-

tify the unsteady motion of the point of transition to tur-

bulence. In combination with simultaneous measurements

of the unsteady surface pressure distributions, the results il-

lustrate the effects of compressibility, sweep, pitch rate, and

proximity to the wing tip on the transition and relaminar-

ization locations.

NOMENCLATURE

A pitch rate,i_c/21r..

c airfoilchord (17.3 in.)

Cp pressure coefficient,(P - l'_)/q

C_, pressure coefficientfor locallysonic

chordwise velocity

k reduced frequency, wc/2U_

M, chordwise Mac.h number, Moo cosA

Moo freestream Mach number

Pc,, freestream static pressure

q dynamic pressure, _poolI_
t time

T oscillation period

Re Reynolds number, cU_/u

U¢ chordwise component of freestream velocity,
U®cosA

freestream velocity

distance along chord from leading edge

distance along span from tip leading edge

pitch rate,rad/sec

geometric angle of attack

ramp: a -- a,,.,_, r < 0.125

a = _.,. _ 2(_ - o.12s)(_. - a.,,.),
0.125 < r < 0.625

a = a_=, r _> 0.625

sine: a=a0-alcos2xr

Presented at the Fifth Sympolium on Numerical and Physical Aspccta
of Aerodynamic Flows, Long BeLch, CA, January 13-15, 1992.

U_
X

Z

&

¢2

a,, steady state stallangle

A sweep-back angle

u kinematic viscosity

poo freestream density

r nondimensional time, t/T

w circular frequency, 2_/T

INTRODUCTION

Knowledge of the state of the boundary layer isa pre-

requisiteto understanding the aerodynamics of airfoilsand

wings in unsteady motion. In particular,the response dur-

ing dynamic stall(pitchingmotions penetrating beyond the

steady-state stallangle) may differsubstantially,depend-

ing upon whether the boundary layer prior to separation is

laminar or turbulent, completely subsonic or locallysuper-

sonic, fullyattached or containing regions of reversed flow.

The boundary layerstate isin turn influenced by the Reyn-

olds and Mach numbers of the external flow,airfoilcontours

and surface roughness, freestream turbulence level,and the

presence of swk,ep and three-dimensionality.

Numerous investigations of dynamic stall have been

conducted, at Reynolds numbers from l0s to I07,at Mach

numbers from essentiallyincompressible to nearly transonic,

and for a wide variety of two- and three-dlmensional geome-

tries. Most have concentrated on measurements of either

the aerodynamic forces (surface pressures or overall model

loads) or the flow fieldcharacteristics(using various visual-

ization techniques). Only a few studies have included mea-

surements of the boundary layer state. The most informa-

tive approach isto obtain complete boundary layer profiles

at numerous stations by means of hot wire anemometry _

or laservelocimetry.2 This is usually a difficultand time-

consuming process. A simpler approach is to use surface-

mounted instrumentation to obtain qualitativecharacteris-

tics.Sublimation, surface visualization,and shear-sensitive

liquid crystal techniques have proven useful in steady or

slowly varying flow. For higher frequency (f_- 10Hz)condi-

tions,and when data can only be efficientlyacquired elec-

tronically,the surface hot film gage is preferred,s-s

This paper presents the resultsof such surface hot film

gage measurements of the state of the boundary layer on

a three-dimensional wing model. The model was scaled to

be representative of a fullscale helicopter main rotor, with

Reynolds numbem of 2-6x 1(f. It was tested at freestream

Mach numbers between 0.2 and 0.6,and in both swept and

unswept configurations. Previous publicationss-t°have de-

scribed the surface pressure and integrated aerodynamic



load results from the current experiment and from an ear-

lier experiment using a two-dimensional (tunnel-spanning)
version of this model. The boundary layer state measure-

ments d.escribed in the current paper should contribute to

the understanding of the previous results. The measured

- - " transition locations should also be useful for computational

simulation of the experiment.

• DESCRIPTION OF EXPERIMENT

The model was a straight, rectangular, untwisted, semi-

span wing of 17.3 in. (44 cm) chord and 48 in. (122 cm) span

(Fig. I). The aspect ratio of a full wing would be 5.6. The

wing consisted of a steel spar and fiberglass airfoil panels,

and had a Sikorsky SSC-A09 9% thickness cambered section

(Fig. 2). Airfoil coordinates have been provided in Ref. 6.

The surface was kept smooth, with no artificial roughness

added to alter the transition characteristics. The wing was

mounted at sweep angles of 0, 15, and 30"from the side

wall of the 8 ft (2.4 m) octagonal test section of the UTRC

Large Subsonic Wind Tunnel. Additional airfoil panels were

added to the spar at non-zero sweep angles in order to keep

the wing tip I chord at the tunnel centerline. The experi-
ment was conducted at five chordwise Mach numbers, M, =

0.2, 0.3, 0.4, 0.5, and 0.6. Based upon the model chord and

the fact that this wind tunnel is vented to atmosphere in

the stilling section, the chord Reynolds numbers for these

experiments were approximately equal to 107 x Me. Lon-

gitudinal turbulence levels have been measured in this fa-

cility using an LDV system to be between 0.7 and 1.2°_ of

the freestream velocity H. Measurements with an unsteady

pitot-static probe during the current experiment indicated

root-mean-square unsteadiness equivalent to 0.35-0.5% of

the freestream velocity for 0.3 _< M, _< 0.6, and 0.9% at M_

-- 0.2.

A hydraulic rotary drive oscillated the model in pitch

about the line connecting the root and tip ¼ chord. Two
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Fig. 1. Wing planform and instrumentation locations.

pitching waveforms were used, sinusoids and ramps. The

sinusoids were performed at frequencies from 1.25 to 12

IIz (0.025 _< k <_ 0.15), at amplitudes primarily of 6 and

I0', and at numerous mean angles. The ramps began at

a steady-state condition (usually _ = 0), increased at con-

slant rate to a maximum angle, maintained that maximum

for a short time, and then returned to the initial condition.

The maximum pitch angles were 30'at M, = 0.2 and 0.3,

25'at M_ = 0.4, 18'at M, = 0.5, and 13.5'at Mc = 0.6.

The nondimensional pitch rates were selected between A=

&c/2U_o of 0.001 and 0.025, bounded by a limiting dimen-

sional rate of 560"/sec. Data were obtained for a total of

259 large amplitude simmoids, 120 ramps, 260 small ampli-

tude sinusoids, and 295 steady-state conditions. The com-

plete data set will be made available in a technical report

and a set of digital data tapes.

Unsteady surface pressure measurements were made on

the wing model by 112 miniature transducers distributed

among fivespanwise stations. The suction surface trans-

ducer locationsare shown by the dots in Fig. I. The chord-

wise arrays on the upper surface had lO, 14, or 18 transduc-

ers each. The lower surface arrays were lessdense, contain-

ing 6 or 18 transducers each. The transducers were installed

so as to retain a smooth surface contour and achieve a flat

frequency response to at least4 kHz. The pressures were

integrated along the chord at each spanwise station to deter-

mine the unsteady lift,pressure drag, and pitching moment

coefficients.

Sixteen flush-mounted surface hot flhn gages were used

to determine transitionand separation locations. As shown

by the x-marks in Fig. I,the gages were located inchordwise

arrays at three spanwise stations,z/c = 0.08,0.27,and 0.70.

(Note that z = 0 isat tilewing tip.)The c]mrdwise stations

were x/c = 0.026, 0.060, 0.103, 0.192, 0.302, 0.464, 0.682,

and 0.880. All eight chordwlse stations were used at z/c

-- 0.70, while only the forward four stations were used at

z/c = 0.08 and 0.27. The x/c = 0.026 and 0.103 gages at

z/c = 0.70 were offset by 1 in. (to z/c = 0.65) to reduce

the chance for thermal interference. TSI model 1268 gages

were installed in holes drilled through the fiberglass airfoil

skins. Each gage consists of a heated element deposited on

the end of a 0.15 in. (0.38 cm) diameter quartz rod. The hot

films were operated in the constant-temperature mode, at a

nominal operating temperature of 225 C, corresponding to

an overheat ratio (hot to cold gage resistance) of 1.35. The

output voltage will increase with the heat transfer from the

gage, and therefore, by the Reynolds analogy, with the shear
stress at the wall. The anemometer circuits were mounted

immediately outside of the wind tunnel wall to minimize

lead resistance and noise.

Fig. 2. SSC-A09 airfoil section.

The output voltages from both the pressure transducers

and hot film gages were passed through a I0 kHz low pass

filter, and digitized (to 15 bit accuracy) at a rate of 1024

samples per oscillation period (T). Ensemble-averaged time

histories were computed using data from 20 pitching oscil-

lations. Both the individual oscillations and the ensemble

averages were recorded on digital magnetic tape.



The hot film results were intended to provide only qual-

itative information on transition and separation locations.
When the flow over the hot film gage is laminar, the heat

transfer is generally low, with little random unsteadiness.
Movement of transition past the gage is indicated by a rapid

rise in heat transfer, accompanied by an increase in the

higher frequency, random portion of the signal. Separation
is indicated by a low level of average heat transfer, but a

high level of unsteadiness. Interpretatlon of hot film sig-
nals is simplified in a periodic unsteady flow because the

changes from one flow state to another can be more read-
ily identified than the characteristics of a steady-state flow.

It is particularly difcult to determine if an individual signal
with moderate unsteadiness is turbulent, separated, or tran-
sitional.

No attempt was made to obtain quantitative values of

skin friction. Calibration of multiple surface mounted gages
for unsteady flow is quite difficult, because of the need to

either a) calibrate all probes in a reference unsteady flow

prior to installation, b) provide a reference flow at each

probe, or c) calibrate the probes by comparison to a trace-
able and portable reference probe. Surface-mounted quartz

substrate gages (such as used here) have been shown to

have limitations in unsteady flow, including different steady
and unsteady calibrations zs'ls The difficulties are created

because heat is transferred not only from the active element
to the fluid, but also from the element to the substrate, from

the substrate to the model, and from the substrate to the

fluid. The characteristic lengths and times for these various

processes differ, resulting in different steady and unsteady

responses. 12 Surface gages with a cavity below the heated
element have been more successful in obtaining quantita-
tive unsteady data. 14,1s The qualitative information at the

relatively low frequencies (1-10Hz) of interest here should,
however, be valid.

Transition information may also be obtained from the

surface pressure data. As described in Refs. I, 5, 6, and 16,

transition is frequently accompanied by an increase in the

higher frequency random component of the pressure, and by
a small shift in the ensemble-average. The problem with this
technique is that transition is not the only source of such

pressure changes. The pressure information is most useful

in confirming or extending transition information obtained
from other means. For example, several hot film gages were

not operating properly during the unswept portion of this

experiment. The data from adjacent pressure transducers
was used to cover the resulting gaps between functional hot

films. Comparison between hot film and pressure informa-

tion at other stations confirmed that the pressure changes
were actually caused by transition.
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STEADY CHAIIACTERISTICS Fig. 3. Steady ]tot film results at Mc = 0.3, A = 30, and

z/c -- 0.7.

For each steady (fixed a) condition, hot film gage volt-

ages were recorded over a 5 second period and averaged.
Results for each value of a during a particular test series
(at fixed M_ and A).were used to form a 'quasi-steady' data

file containing hot film outputs as a function of a. Figure 3

shows an example for Me = 0.3 and A = 30 ". The results
for the 8 gages at z/c -- 0.7 (the station furthest from the

wing tip) are shown in two formats: as AC voltages (Fig. 3a)



and self-scaled to a peak-to-peak value of l (Fig. 3b). The

AC voltage illustrates the magnitude of the output varia-

tions, while the self-scaled output allows regions of change
to be easily identified and provides a clear qualitative pic-

ture. (Since the gages are not calibrated, quantitative corn- _"

parisons between gages are not possible.) The origias for the o
O

output at each chordwise position (x/c) are along the left of

the figure, and the scale is at the lower right. Because data
C

points were only acquired every 1 or 2', the quasi-steady o

series appear somewhat rough. '_

I--

At x/c = 0.026 the sharp increase in heat transfer cor-

responding to the passage of the transition point over the

gage occurs between a = 8 and I0'. Similar sharp increases

are also present for the x/c = 0.06, 0.10, and 0.19 gages, but

at successively lower values of a. This indicates that at a =

0, transition occurs between the x'/c = 0.19 and 0.30 gages, o_

and as a increases the transition point moves forward, oc-
u 0.25

curring upstream of the x/c = 0.026 gage for a >_ 10". "_x
Away from transition, the heat transfer decreases with in-

¢;; 0,20

creasing a in both laminar and turbulent regions prior to o_

separation, This decrease is a consequence of the thickening

of the boundary layer. It is present for 0 _< a _< 8'and _ o.15

I0"<_ a < 20"at x/c = 0.026, and at a < 15"for x/c :- ._- o.ld
0.682.

C

E
_.. 0.05

0.00
0

Separation is manifested by the sharp drop in heat

transfer that occurs after a = 15", most noticeably at x/c

= 0.06, 0.10, and 0.19. This sharp drop does not occur at

the x/c = 0.026 station until a = 25". On the aft portion

of the wing, where the boundary layer is never laminar, the

self-scaling emphasizes a 'bump' of increased heat transfer

that occurs while the separation process is underway (be-

tween its initiation at a = 15' and completion at a -_ 26".

A possible explanation is that the turbulent boundary layer

near the trailing edge is already quite thick at a = 15 ', and

in fact may have thin regions of reversed flow. The result-

ing heat transfer from the hot film gages would be quite low.

The vorticity shed during separation energizes the trailing

edge flow, increasing the heat transfer. Once the process

is completed and the flow has separated over the entire sec-

tion, the average output returns to a low level. (The random

variations, not shown here, remain high.)

A more quantitative picture of the effect of changes in

Mach number, sweep angle, and spanwise position on steady

flow transition is provided in Fig. 4. The symbols represent

the angle of attack, a, at which the transition point moves

past the hot film gage at each chordwise position, x/c. The

selected value of a was that corresponding to the most rapid

increase of hot film output, which generally occurred 20-

40% of the way from the start to the finish of the transition

process. Figure 4a illustrates the effect of Mach number at

fixed spanwise position (z/c = 0.70} and sweep angle (A =

30). At M_ = 0.2 transition occurs near x/c = 0.3 at a _- 0,

and moves forward of x/c = 0.026 by a = I0'. At Mc = 0.3

transition is always forward ofx/c = 0.3, and moves past the

x/c -- 0.19, 0.10, 0.06, and 0.026 gages at somewhat lower

angles of attack than at M, -- 0.2. This trend continues

at M_ = 0.4, as transition always occurs before x/c ffi 0.19,
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Fig. 4. Mach number, sweep angle, and spanwise position

effects on transition locations in steady flow.

and moves forward of x/c = 0.026 at a "" 8.5 ", a value

approximately 1.5' less than at Me = 0.2. These results are

consistent with previous data from the unswept 2-D version

of this model at Mc = 0.2 and 0.4. s The primary difference

is that the lower effective angle of attack of the 3-D model

(a result of the wing tip vortex _) delays the forward motion

of transition to slightly higher geometric angles. The final

data shown on Fig. 4a are at M_ = 0.5. The transition

point ceases forward motion near x/c = 0.06 at a _ 7'

The shock effects responsible for this will be discussed in

the section on Mach number effects on unsteady transition.



Figure4b illustratestheeffectofsweep angleforfixed

spanwiselocation(z/c= 0.7)and Much number (Me = 0.3).

At loweranglesofattack(a __6' ),transitionisdelayedby

non-zerosweep. At _ --0 transitionon the swept wing oc-

curs near x/c = 0.3,approximately 10% of chord further
downstream than at A = 0. The forward motion of tran-

sitionisdelayedby up to 3"in a at A -- 15°,and by up

to I 'at A = 30", incomparison to the A --0 results.As

a increasesthisdifferenceisreduced. The motion of the

transitionpointpast the x/c --0.026gage occursat cr__.

10' forallthreesweep angles.

The effectofspanwise positionisillustratedinFig.4c

at fixedMuch number(Me = 0.3)and at two sweep angles

(A = 0 and 30'). At A = 0 (the solidlines)there isa

substantialdifferencebetween the inboard(z/c= 0.7)and

tip (z/c = 0.27 and 0.08)stations.Compared to the in-

board results,transitionnear the tipoccursfurtherforward

(atx/c -_0.06)at low a but moves forward more slowly

(passing x/c = 0.026 at 2"higher a). Several mechanisms
appear to be involved. Proximity to the wing tip implies

proximity to the tip vortex, which reduces the effective an-
gle of attack. This would tend to delay forward motion of

transition. In contrast, transition may be promoted by the

three-dimensionality and unsteadiness introduced by the tip
vortex. It is possible that at low a this second mechanism

causes early transition, while the forward motion of tran-

sition is delayed by the reduced effective angle of attack.

These differences do not appear at A = 30', or at A =

15" (not shown). This is plausible since the tip vortex has
less influence on the aerodynamic loading when the wing is

swept?
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UNSTEADY TRANSITION

The simplest example of transition in unsteady flow is

provided by data obtained during constant pitch rate ramps.

Figure 5 shows ensemble averaged hot film and pressure time
histories for an _ = 0 to 30' ramp at M_ = 0.2, A = 15, and

A = 0.005. The series of pressure coemcient time histories

at z/c = 0.59 shown at the left of the figure show a smooth
increase in pressure until an abrupt separation occurs at

a nondimensional time of r -- 0.45 (corresponding to _ --

20" ). After separation a negative pressure peak associated
with the dynamic stall vortex travels aft along the chord.

This is followed by a region of constant pressure indlcating
massive separation. Further details on the pressure mea-

surements during dynamic stall are provided in Refs. 6, g,
and 10.

The corresponding hot film time gage time histories at

z/c = 0.7 are shown at the lower right of Fig. 5. Note that
because data are acquired 1024 times over the period, T,

the temporal resolution of the unsteady measurements is

much greater than that of the quasisteady measurements

(Fig. 3). Thus the movement of transition past the gages
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Fig. 5. Pressure and hot film time histories and chordwise

pressure distributions at M¢ = 0.2, for a ramp at A = 0.005,

A = 15", and z/c = 0.7.



is very sharply defined. Over the initial (steady state, a = 0.20

0) portion of the cycle, transition occurs just aft of tile x/c

= 0.30 gage, but once the pitching motion begins at r = o
"_ 0.16

0.125, transition immediately moves forward. The motion ×
=

continues until r -- 0.3 (a _ I0'), when transition occurs

ahead of the x/c = 0.026 gage. As shown by the chord- _ 0.12
O

wise pressure distributions at r = 0.2 (number I in Fig. 5)

and at r = 0.3 (number 2), transition (indicated by the 'T') c o.os
typically occurs shortly after the suction peak. This is in o

agreement with the experimental and theoretical work re- '_
2 o,o4

ported in Ref. 17 for incompressible flow over airfoils at a _-

Reynolds number range of 10 s <___Re _< I0 s. The strong ad-

verse pressure gradient downstream of the suction pressure ooo o
peak was found to induce transition within 1-2% of chord

aft of the peak.
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The series of arrows on the pressure time histories (the
left portion of Fig. 5) indicate local pressure increases that

approximately correspond to the transition measurements

obtained with the hot film gages (the right portion of the

figure)• The pressure increases are quite small, and are only

apparent between x/c = 0.026 and 0.149. They generally

occur slightly after the hot film gage output rises, i.e. when

transition is complete.

The results in Fig. 5 indicate that transition has moved

very close to the leading edge by r = 0.3, well before the

onset of separation atr = 0.45 (a = 20' ). There is no indi-

cation of a significant transitional separation bubble. This

implies that dynamic stall for the SSC-A09 section at Reyn-

olds numbers greater than 2x10 _ is a result of turbulent

boundary layer separation. This differs from the observa-

tions reported in Refs. I and 2, for the NACA 0012 airfoil

at lower Reynolds numbers (approximately 3-5x 10s). For

those conditions, the transitional separation bubble appears

to be a key participant in the dynamic stall process. The se-

quence observed in the current experiment, laminar bound-

ary layer - turbulent boundary layer - separation, has also

been observed during other high Reynolds number experi-

ments, such as Refs. 3 and 4. The separation process for the

current model is discussed at greater length in Re[. I0.

The preceding paragraphs have described the general

behavior of transition during an unsteady pitching motion.

This behavior is similar to that observed at otherpitch rates,

sweep angles, spanwise positions, and Much numbers (at

least when local supersonic flow effects are minimal). The

actual location of the transition point, and its motion as ce is

increased is, however, dependent on all of these parameters.

These dependencies will be discussed next.

The effect of pitch rate on the location of transition is

illustrated in Fig. 6. Figure 6a shows results at the inboard

station, =/c -- 0.7, for ramps at a series of five pitch rates

between A = 0.001 and 0.02, at fixed Much number (M=

= 0.3) and sweep angle (A = 0). Steady results are also

included. Note that the results at x/c = 0.I0 and 0.149 were

obtained using RMS pressure data, because of the problems

with the 0.I0 hot film gage described above• (There is no
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Figl 6. Effect of pitch rate on transition locations for ramp

motions at M'_ = 0.3, and A = 0.

hot film at x/c = 0.149). The primary effect of increasing

the pitch rate is to delay forward motion of the transition

point. There is a delay of approximateiy 0.8 _ between the

steady and A = ().()()J conditions, and an additional delay

of approximately 1.2" from A = 0.001 to A = 0.02. The

unsteady delays are Consistent wlth the results for the 2-D

model s. Data at z/c = 0.027 and at other pitch rates and

sweep angles (not shown) exhibit similar lags with increased

pitch rate.

Close to the wing tip, at z/c = 0.08 (Fig. 6b), there

is still a transition delay associated with increased pitch

rate, but there is also a a substantial difference between the

steady and unsteady response. In steady flow the transition

point moves from x/c = 0.06 at a _- 2' to x/c = 0.026 at ¢x =
I0'. This behavior has been discussed above in connection

with Fig. 4c. In unsteady flow transition occurs consider-

ably further aft, between x/c = 0.I0 and 0.19 at low a, and

moves forward of x/c = 0.026 only at c_ = 15-16 ", a delay

of at least 5 ' compared to the steady results. Since the rel-

atively early transition in the steady flow was attributed to

unsteadiness and three-dimensionality associated with the

tip vortex, it is possible that these disturbances do not de-

velop rapidly enough during the unsteady ramp to cause

early transition.



Sweep Effects.

Figure 7 illustrates the effect of sweep angle on the tran-

sition location during ramps at A = 0.01 and Mc -- 0.3. At

the inboard location of z/c -- 0.70 (Fig. 7a), the effect of

sweep appears limited to a somewhat earlier transition at

low a for the unswept wing. For a > 8', the transition

location exhibits no dependence on sweep. This is consis-

tent with the steady-state, Mr = 0.2 data shown in Fig. 4b,

and with pressure data ° showing little effect of sweep on the

inboard portion of the wing prior to stall. At z/c = 0.08

(Fig. 7b) sweep effects are more significant. Transition on

the unswept wing occurs further forward for a < 8', and

further aft for a > 10" This is also consistent with theI

steady-state results (Fig. 4c).

Mach Number Effects.

The effect of Mach number will be illustrated using

ramp data for the A = 15 ' wing, at a nondimensional pitch

rate of A = 0.005, and at the z/c = 0.1'0 station. Ensemble

averaged hot film time histories and instantaneous chord-

wise pressure distributions will be discussed at M, = 0.2,

0.3, 0.4, 0.5, and 0.6. This sweep angle and spanwise posi-

tion was selected for in-depth discussion because the span-

wise variations appear relatively low. The pitch rate of 0.005

was selected because it was the highest value that was within
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Fig. 7. Effect of sweep on transition locations for ramp

motions at M_ = 0.3, and A = 0.01.

the drive system limits at all Mach numbers. Qualitatively

similar variations with M, were measured at other test con-

ditions.

At Mr = 0.3 (Fig. 8) the results are generally similar

to those already described at M, = 0.2 (Fig. 5), with two

differences. The first is that the initial transition location is

somewhat further forward, near the x/c = 0.19 gage rather

than at the x/c = 0.30 gage. As shown by the chordwise

pressure distribution at r = 0.2 (a = 4.7', number 1 in

Fig. 8), the transition location {indicated by the 'T') is still

slightly downstream of the suction peak. A more interest-

ing difference from the M, = 0.2 results is the rapid drop in

hot film output prior to transition present at x/c = 0.026.

This drop is sharper than the gradual reduction that typ-

ically occun as increases in a cause the boundary layer to

thicken and thereby reduce the heat transfer. More rapid

reductions tend to occur at M, >_ 0.3, both in the current

experiment and also in the earlier two-dlmensional unswept

experiment s . The cause appears to be compressibility. The

minimum hot film output is at r = 0.275 and a = 9.1'
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Fig. 8. Hot film time histories and chordwise pressure dis-

tributions at M, = 0.3, for a ramp at A = 0.005, A = 15',

and z/c = 0.7.



Based upon the measured pressure distribution (number 2
in Fig. 8) and the steady isentropic relations, the maximum
local Mach number at this time is approximately 0.0, double

the freestream value. Increasing the local Mach number gen-

erally increases the temperature, increases boundary layer
thickness, reduces the density, and increases the molecular

viscosity and thermal conductivity. Is The first three effects
will tend to reduce tile heat transfer from the heated ele-

ment to the air (and therefore to decrease hot film output),
while the increase in conductivity will tend to increase heat
transfer. The actual balance between the effects in this un-

steady, variable pressure gradient flow is not known, but it
appears that the effects tending to decrease heat transfer

are stronger. There is in general a good correlation be-

tween rapid drops in hot film output and regions of high
subsonic local Mach numbers. No evidence has been found

for the other possible cause of the decreased heat transfer,

a laminar separation bubble. Neither the surface pressure
distributions, the magnitude of random unsteadiness in the

hot film and pressure signals, nor limited surface oil flow vis-

ualization indicate separation at these low angles of attack

(,, < 1o').

At Mc = 0.4 (Fig. 9) the drop in the heat transfer near
the leading edge prior to transition is more pronounced. The

maximum local Mach number at r = 0.35, the time of min-
imum hot film output, is 0.83. The sequence of events is

quite compressed for this condition. First, the transition

point moves forward of x/c = 0.026 at r = .37 (a = 9.7'),

as shown by pressure distribution number I in Fig. g). Next,
the flow becomes locally supersonic at r -_ 0.4 (a = 10.9' ).
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This is indicated in pressure distribution number 2 by the

C_, arrow. The supersonic bubble expands past x/c = 0.060

at r = 0.475 (c_ = 13.g', pressure distribution number 3),
with a maximum local Mach number of 1.27. This is almost

immediately followed by separation, as indicated by the loss

of leading edge suction starting at r = 0.5 (c_ = 14.g',

pressure distribution number 4). The separation appears to
initiate near x/c = 0.02-0.10 (as indicated by the earliest

drop in heat transfer). The rapid sequence of transition, su-

personic flow, and separation in a very compact region near

the leading edge illustrates the complexity of the flow and
demonstrates the need for high spatial and temporal reso-

lution in both experimental or computational experiments.

At M_ = 0.5 the region of supersonic flow is more exten-
sive, leading to the more complex hot film response shown

in Fig. I0. At lower a the flow remains subsonic, and the

behavior is similar to that at lower Me. The transition point

moves forward from its initial position near x/c = 0.19, and
passes x/c = 0.10 at r = 0.3. Pressure distribution number I

(at _ = 7.1 ' ) in Fig. I0 illustrates this portion of the cycle.

By r = 0.4 (c_ = 8.8", pressure distribution number 2), the
flow ahead of x/c = 0.06 has become supersonic. Although

the maximum local Mach number is quite low (1.05) at r
= 0.4, it increases rapidly, reaching a maximum of 1.4 at r

= 0.5 (c_ = 12', pressure distribution number 3). The hot
film time histories reflect the formation of the shock at r __

0.4 by the rapiddrop in heat transfer at the x/c = 0.026

gage and the rapid increase in heat transfer at the x/c --
0.06 gage. The decrease at the x/c = 0.026 gage is similar
to the decreases caused by compressibility that were previ-
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Fig. 9. Hot film time histories and chordwise pressure dis-
tributions at M_ = 0.4, for a ramp at A = 0.005, A = 15',

and z/c = 0.7.
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Fig. 10. Hot Film time histories and chordwise pressure

distributions at /V/c = 0.5, for a ramp at A = 0.00,5, ,_ =

15', and z/c = 0.7.

ously described at lower M'c. The increase at x/c = 0.06,

which is now downstream of a shock, appears to be a com-

bination of two factors. The first is transition, induced at

the shock, and the second is the increase in density behind

the shock (a 50% increase is predicted by the normal shock

relations). An increase in temperature will also occur be-

hind the shock, tending to reduce heat transfer from the hot

film, but the effects of the density increase and of transition

are apparently dominant.

As a increases further, the supersonic region expands

aft past the x/c = 0.06 gage at r -_ 0.45. The heat trans-

fer from this gage drops since it is now in the supersonic
flow ahead of the shock. Pressure distribution number 3 in

Fig. 10, at r-- 0.5 and a --- 12.0', illustrates this situation.

It is likely that the transition point has returned aft with the

shock, to between the x/c = 0.06 and 0.10 gages. RMS hot

film time histories (shown at the center of Fig. 10) support

this hypotheses. The RMS is the variation at each value of

r of the data for 20 individual cycles about the ensemble

average. The RMS at the x/c -- 0.06 gage is considerably

lower at r -_ 0.4 and 0.5, when the ensemble averaged out-

put is low (and the flow is presumed to be laminar at this

gage), than at r _ 0.425, when the ensemble averaged out-

put is high (and transition is presumed to be forward of

the gage). At r = 0.55 (a = 13.6", pressure distribution

number 4) the boundary layer has begun to separate near

the shock. The time and location of the separation are indi-

cated by the initial reductions in heat transfer and suction

pressure. Pressure distribution number 4 clearly shows the

loss of suction and the disappearance of'a sharply defined

shock. The flow very quickly becomes massively separated

over the entire upper surface. This process is more com-

pletely described in Refs. 9 and I0.

At the highest Much number, A4_ = 0.6, compressibil-

ity effects are even more dominant. As shown by pressure

distribution I in Fig. II, locally supersonic flow begins at

r -_ 0.3 and c_ = 4.5'. Transition occurs between the x/c

= 0.I0 and 0.19 gages, just aft of the suction pressure peak.

Transition moves forward past the x/c = 0.I0 gage at r =

0.35 (ok = 5.5 ", pressure distribution number 2). While the

maximum local Much number at Airc= 0.6 is 1.45, almost

the same as the value measured at M'c -- 0.5, the supersonic

region extends further aft, to x/c = 0.19 at r = 0.45 (c_

= 7.6', pressure distribution number 3). As at Air_ = 0.5,

there is reduced heat transfer from the hot film gage ahead

of the shock and increased transfer from the gage behind

the shock. Transition is again linked with the shock, and

appears to move aft as the supersonic zone strengthens be-

tween r = 0.35 and 0.45. Separation occurs starting at r "--

= 0.55, as indicated by drops in the ensemble averaged hot

film output, increased randomness, and the disappearance

of a sharply defined shock. This last effect is shown in pres-

sure distribution number 4, at r = 0.6 and a = II.I '. At

._r -_ 0.6 the loss of leading edge suction is not as sudden as

at M'c = 0.5, and massive separation of the entire upper sur-

face is somewhat delayed. Further details on the separation

process are provided in Ref. I0.



Thetransition results described in this section are sum-

marized in the form of a transition location versus angle

of attack plot in Fig. 12. The low angle of attack (a <

4 ' ) data indicate that as Me increases, the transition point

moves forward earlier. Motion past the x/c = 0.19 gage oc-

curs at approximately 4" earlier at Me = 0.6 than at Me =

0.2. The earlier transition at higher Mc may be at least in

part a result of increased Reynolds number. At low angle
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Fig. II. Hot film time histories and chordwise pressure

distributions at Me = 0.6, for a ramp at A = 0.005, A =

15 ", and z/c = 0.7.

of attack the adverse pressure gradient aft of the suction

peak is relatively weak, so transition may be induced by the

amplification of natural disturbances, similar to the process

on a fiat plate. The concept of a critical Reynolds number

based on x, _, is applicable. For the 0.4-1% freestream

turbulence levels present in this experiment, a critical Reyn-

olds number of approximately 5xl0 s is likely} g The value

of x/c yielding this Reynolds number varies from x/c = 0.25

at Me = 0.2 to x/c = 0.08 at Me : 0.6. The Me < 0.4 data

in Fig. 12 are in rough agreement with this trend, but at

Me = 0.5 and 0.6, the experimental transition locations are

considerably further aft.

At higher angles of attack (6 _< a < 10'), the depen-

dence of the transition location on Mr is reduced (Fig. 12),
as long as the regions of supersonic flow are very small and

weak. Under these conditions (Me < 0.4), transition ap-

pears to be initiated by the adverse pressure gradient im-

mediately aft of the suction peak. As shown by the pressure

distributions in Figs. 5, 8, and 9, the position of the suction

peak does not vary strongly with Me.

For Me = 0.5 and 0.6, sizable regions of supersonic flow

develop at moderate angles of attack. The shock terminat-

ing these regions becomes the initiator of transition. As

shown in Fig. 12, at Me = 0.5 this link between the transi-

tion point and the shock causes the forward motion of the

transition point to be halted near x/c = 0.06-0.10 at a -

I0". At Mc = 0.6, the transition point also remains near

the shock (x/c > 0.I) for a _> 5". The chordwise resolu-

tion of the hot film measurements is too coarse to determine

whether transition occurs immediately following or preced-

ing the shock. The results only indicate laminar' conditions

forward of the shock and turbulence aft. There is no clear

indication of the separation that is the classic response of a

laminar boundary layer to the presence of a shock. There is

also no evidence of the multiple 'lambda' shocks that are

commonly observed with laminar boundary layers, s°,31 it

must be emphasized that there are potentially significant

differences between the current experiment and the tradi-

tional results. This experiment is at a low freestream Much
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Fig. 12. Effect of Mach number on transition locations for

ramp motions at A = 0.005 and A = 15".



number and moderate angle of attack, generating a thin su-

personic region near the highly curved leading edge, while

the traditional experiments were typically performed at low

angle of attack and higher freestream Mach number, gen-
erating a thick region of supersonic flow over the aft (low

curvature) region of an airfoil or plate. The combination of

a relatively weak shock (M -_ 1.3-1.4), a thin supersonic re-
gion, and a curved surface may result in a shock that induces

transition, but, at least temporarily, no significant separa-

tion. At higher ang]e of attack (c_ > 12 'at Mc = 0.5) the
dynamic separation process does begin in the vicinity of the
shock3. I°

TRANSITION AND RELAMINARIZATION

DURING SINUSOIDAL MOTIONS

The previous sections have described the transition pro-

cess at steady state and during constant pitch rate ramps.
This section will discuss results obtained for periodic s|nu-

soidal pitching motions. The primary differences are the

introduction of a time-varying pitch rate, and a periodic

wake. The pitch-down portion of the sinusoidal motion also
allows reattachment and reiaminarization to be studied.

Figure 13 provides an example of the hot film and pres-

sure results during sinusoidal motion. The conditions are a

= I0'- 10'cosaJt, Mc = 0.2, k = 0.05, A = 15', and z/c

= 0.7. The pressure results (Fig. 13a) show a generally
smooth response, punctuated by a sharp separation at y "_

0.46. The separation occurs at a " 19.8 ', after the pitch
rate has dropped substantially from its maximum value of

A = 0.009. The negative pressure peak associated with the

dynamic stall vortex propagates aft, followed by a constant
pressure region indicating massive separation. Reattach-

ment begins near the leading edge at r -'- 0.67 (a = 15' ).

The hot film time histories (Fig. 13b) are qualitatively

quite similar during pitch-up to the ramp results at Mc =0.2

shown in Fig. 5. As with the ramp, the transition point
moves forward from x/c > 0.30 at a = 0 past x/c = .026 at

a -_ 10.7 '. The region of low heat transfer caused by sep-
aration corresponds to the constant pressure region shown

inFig.13a. Startingat r -_0.66,the boundary layerreat-

tachesfrom the leadingedge aft,as shown by the rapid

increaseinheat transferat the x/c = 0.026,0.06,and O.lO

gages (Fig. 13b). The high level indicates that the flow

reattaches as a turbulent boundary layer. The subsequent
drop in heat transfer, starting at the x/c = 0.026 gage at

r -_ 0.74 (a = I0.9'), corresponds to a relaminarigation
of the boundary layer, again moving from the leading edge

aft. The relaminarization at x/c = 0.026 occurs at approxi-
mately the same value of a as transition. This symmetry is

not present for separation and reattachment, since at x/c =
0.026 separation occurs at a = 19.8' and reattachment at

a = 15 ". The symmetry of transition and relaminarigation

does not persist through the conclusion of relaminarlzation.
The transition point moves aft past x/c = 0.30 at r -- 0.97

(a = 0.2 "), but does not return forward until r = 0.07 (a

= 0.9' ).
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Transitionandrelaminarization locations for a series of

sinusoidal oscillations at reduced frequencies of k = 0.025,

0.05, 0.I, and 0.15 are shown in Fig. 14. The Mach num-

ber, sweep angle, and spanwise position are the same as
in Fig. 13. These results show significant hysteresis in the

transitlon-relaminarization cycle at higher frequency. At a

given chordwise position, relaminarization generally occurs
at a lower a than transition. The largest measured dif-

ference is at x/c = 0.19, where data at k = 0.15 show a
3.6' lower relaminarlzation angle. The hysteresis decreases

at higher a, as the transition point approaches the leading

edge, to a maximum of 1.8' at x/c = 0.103 and 0.9" at x/c

= 0.026. At higher a, transition is primarily influenced by
the strong adverse pressure gradient immediately aft of the

suction peak. Thus there is less variation in transition loca-
tion than at lower a, where transition occurs further aft, in

a reglon with a more moderate pressure gradient. The hys-

teresis observed in Fig. 14 for a = I0 "- I0" coswt motions,
in which there are large regions of flow separation, is also

present in Fig. 15 for a = 6'- 6" coswt motions, in which
the boundary layers always remain attached. Separation is

therefore not an essential requirement for hysteresis.

Time histori_ at higher Mach number, M, = 0.5, are

shown in Fig. 16, for an a = 6'- 6'coswt oscillation at k
= 0.05. The pressure time histories (Fig. 16a) show a flow
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Fig. 14. Transition and relaminarlzation locations for sinu-
soidal motions at a = 10 '- 10" coswt, M, = 0.2, A = 15 '

and z/c = 0.7.
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that remains attached, but becomes supersonic for x/c =

0.026 and 0.06 at r = 0.3 and a -_ 8". The expansion of

the supersonic region and rearward movement of the shock

past x/c = 0.06 at r = 0.38 distortsthe pressure time his-

tory by creating a rapid pressure drop. The hot film time

histories(Fig. 16b) during the pitch-up portion of the cycle

appear quite similar to the ramp resultsat thisMach num-

ber (Fig. 10). The increase in heat transfer at the x/c =

0.06 gage between r = 0.32 and 0.38 correlatesclosely with

the pressure time histories(Fig. 16a), which indicate that

the shock forms upstream of x/c = 0.06,and then moves aft

past this position. A similar,but reversed,sequence occurs

during the pitch-down.

Transition and relaminarization locations are shown in

Fig. 17 for M'e -- 0.5 sinusoids at k = 0.025, 0.05, and 0.1.

As at M'e = 0.2, there is significant hysteresis (up to 1.6 ")

involved in the movement of the transition between x/c =
0.19 and 0.06. The differences between the transition and

relaminarizatlon angles for a >_ g" are reduced to less than

0.5'. Under these conditions, the shock is believed to be

the primary determinant of the transition location.
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Fig. 17. Transition and relaminarization locations for sinuo

soidal motions at a = 6'- 6" cos_t, ._rc = 0.5, A = 15',

and z/c = 0.7.

CONCLUSIONS

Experimental measurements of transition locations on

a rectangular wing model during steady-state and unsteady

pitching motions at Mach numbers between 0.2 and 0.6 and

Reynolds numbers of 2-6x 10 s have resulted in the following
observations.

I. At low angle of attack (a < 4 ' ) transition generally

occurs between x/c = 0.14 and 0.3. Transition occurs

furthest aft at M"e = 0.2, and closest to the leading

edge at Me = 0.6. Under these conditions, where the

adverse pressure gradient is relatively mild, the occur-

rence of transition may be associated with reaching a

critical Reynolds number, based on x, of approxi-
mately 5 x 10 i.

2.

3.

4,

6°

7.

As a is increased, the adverse pressure gradient in-

creases and the transition point moves forward. For

a _ 6-8 ", transition occurs a very short distance aft

of the suction pressure peak. Under these conditions,

the dependence on Me (and therefore also Reynolds

number) is reduced, for Me _< 0.4. Transition moves

forward of the first hot film gage (x/c = 0.026) at a
10-12 '.

For the relatively high Reynolds number range of this

experiment, the boundary layer becomes essentially

turbulent prior to separation. There is no indication of

the transitional separation bubble frequently observed

at lower Reynolds number.

At Me = 0.5-0.6, significant regions of supersonic flow

develop near the leading edge at a _> 7-10', with

maximum local Mach numbers of 1.3-1.4. Transition

is initiated at the shock that terminates the supersonic

region at x/c -_ 0.1-O.15. There does not appear to

be any substantial shock-induced separation at these

moderate angles of attack.

Increasing pitch rate from A = 0.001 to 0.02 introduces

a lag in the forward motion of the transition point, by

up to Aa = 2"

Wing sweep angles of A = 0, 15, and 30' do not sub-

stantially alter the transition locations at the inboard

station (z/c --- 0.7 chords from the tip). However, very

close to the wing tip, transition occurs earlier for the

unswept wing at low a than for the swept wing, possi-

bly because of disturbances induced by the tip vortex.

During sinusoidai pitching motions, the transition

point moves forward as a increases, and aft as a de-

creases. At higher reduced frequency, a significant hys-

teresis of up to 3.6" develops between the values of a

for transition and relaminarization. The hysteresis is

much stronger near x/c = 0.15-0.30 than it is closer

to the leading edge.
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Ab_tr@qt

The phenomenon of forced unsteady separation
and eruption of boundary-layer vortlctty ls a
highly-complex, high-Reynolds number flow phen-
omenon, which abruptly leads to the formation of a
dynamic stall vortex as demonstrated earlier by the
authors for a NACA OO1S airfoil undergoing con-
stant rate pltch-up motion. This, as well as the
results of other researchers, have convincingly
demonstrated a complex vortical structure within
the state of unsteady separation prior to the evo-
lution of dynamic stall. This phenomenonof vortex
eruption, although observed In studying dynamic
stall phenomena, Is also associated wlth transition
from laminar to turbulence flow and its generic
nature has been stressed by many researchers
Including the present investigators.

An unsteady Navler-Stokes (NS) analysis is
developed for arbitrarily maneuvering bodies using
velocity-vortlclty variables; this formulation is
nearly form-lnvarlant under a generalized non-
inertial coordinate transformation. A fully-
implicit uniformly second-order (except convective
terms) accurate method is used, with the nonlinear
convectlve terms approximated using a biased third-
order upwind differencing scheme to be able to
slmulate higher-Re flows. No explicit artificial
dissipation Is added. The numerical method Is
fully vectorlzed and currently achieves a computa-
tional index of 7 micro-seconds per tlme step per
mesh point, using a single processor on the CRAY
Y-MP 8/864 at the Ohlo Supercomputer Center. The
simulation results show that the energetic free
shear from the leading edge ls responsible for the
wall viscous layer to abruptly erupt near the cen-
ter of the counterclockwise rotating eddy in the
unsteady boundary layer. Primary, secondary,
tertiary and quaternary vortices have been observed
before the dynamic stall vortex evolves and gathers
Its maximum strength. This study will discuss the
simulation results of Reynold_ number up to Re =
45,000 and wtll also discuss the effort of initial
acceleration In a specific maneuver, on the evolu-
tion of the stall vortex.
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Dynamic stall phenomena have been simulated numer-
ically by a discrete vortex method and viscous flow calcula-
tions. Both simulations could capture the characteristics o_
dynamic stall phenomena qualitatively. Also some numeri-
cal results show good agreements with experiments.

In the calculations by a discrete vortex method com-
bined with a panel method the potential flows around wing
sections is expressed by vortex sheets and separated shear
layers are expressed by discrete vortices. Separated flows
around pitching airfoils(NACA0012) are simulated for var-
ious conditions. A hysteresis of lift of airfoil at dynamic
stall is obtained. The results suggest that the method has
a excellent capability of simulating vortical flows with ex-
cellent small computation cost. In the calculations by vis-
cous flow calculations incompressible Navier-Stokes equa-
tions have been solved by a third-order upwind scheme in
order to understand the flow structure and mechanism of
dynamic stall. Especially the flow mechanics of movement
of separation point on the wing surface, vortex formation
from the surface of the wing and unsteacly Kutta conditions
at the trailing edge of the wing are investigated carefully.
The unsteady flow fields around a pitching airfoil are cal-
culated by moving a grid system relative to the freestream.
Remarkable characteristics of dynamic stall are obtained.
Also the hysteresis curve of aerodynamic characteristics of
CL and Cm are obtained.

i. INTRODUCTION

Studies on dynamic stall have been conducted exper-
imentally and theoretically by the many researchers l-s).
However as the phenomena are essentially non-linear and
the flow field becomes complicated as the separated region is
increased, those phenomena are not understood sufficiently.

In this paper two efforts for simulating dynamic stall
phenomena are discussed. One is based on a discrete vor-
tex method combined with a panel method and the other is
based on viscous flow calculations. Both simulations could

capture the qualitative properties on dynamic stall phenom-
ena. Also some numericalresultsshow good agreements

with experiments.
In the calculationsby a discretevortexmethod com-

bined with a panelmethod*.w.s)the potentialflowsaround
wing sectionsisexpressedby vortexsheetsand separated

shearlayersareexpressedby discretevortices.For thecal-
culationsa new numericalscheme developedby thepresent

suthors_have been used.Inthe calculationa wing section
isexpressedby asetoflinearlydistributedvortexsheetsand

theseparationpointsaredeterminedby boundary layercal-

culations.Separatedflowsaround pitchingairfoilsaresim-
ulatedforvariousconditions.A hysteresisofliftofairfoil

at dynamic stallisobtained.The resultssuggestthat the

method hasa excellentcapabilityofsimulatingvorticalflows
with excellentsmallcomputationcost.

In thecalculationsby viscousflowcalculationsincom-
pressibleNavier-Stokesequationshave been solvedby a

third-orderupwind scheme inorderto understandthe flow

structureand mechanism ofdynamic stall.Especiallythe
flowmechanicsofmovement ofseparationpointon thewing

surface,vortexformationfrom the surfaceofthe wing and
unsteady Kutta conditionat the trailingedge of the wing

areinvestigatedcarefully.The unsteady flowfieldsaround

a pitching airfoil are calculated by moving a grid system
relative to the freestream. Remarkable characteristics of

dynamic stall are obtained. Also the hysteresis curve of
aerodynamic characteristics of Ct. and C_ are obtained.

2. Numerical Simulation of Dynamic Stall
by Discrete Vortex Method

2.1 Analytical Method

The complex potential f of the flow field is expressed
by the following form:

f = Ue-'"z + i fg _)log(z-()d(

+i '_ ra_log(z _log(z zs,))_=t( 2, -zA,) + -
(1)

, where U is the uniform flow velocity and a is the angle
of attack. The discrete vortices expressing separated shear
layers are shed from the separation points on the wing sur-
face. The circulation of each vortex is estimated using the
velocity at the point assumed as the edge of the boundary
layer near the separation point. Hence, unknown quantities
in the flow field are the amount of strength of the singular
points on the wing surface and solved at each time step by
using boundary condition for normal velocity through the
control point on the surface. The detailed description of the
method are discussed in Ref. 7.

For the calculation of the flow around the pitching
wing section, incident angle of the freestream is sinusoidally
changed. Then the angle of attack of the wing section is
given by following form:



= _o + atsin_t (2)

,where the angularfrequencycoisrelatedto the reduced
frequencyk by thefollowingform:

k _ coC
(3)

where c isthe chord length.As the separationpointon

the wing sectionisnot obvious a priori,the separation
pointisdeterminedby theboundary layercalculations.The

Thwaltes' method,+w-m is used for the laminar boundary layer
calculation and the 'I_ruckenbrodt's method "._.8) is used for
the turbulent boundary layer calculation.

2.2 SeparatedFlows around a Wins Sectionat s Fixed

An_le of Attack

Fig. 1 shows sevrM cMculatedinstantaneousstream

linesaround s wing sectionof NACA4412 at angleofat-
tackof20degrees.As shown intheFigurethe flowisquite
unsteaclyand thechangesofseparationpointand separated

regioncan be observed.The calculatedpressuredistribution

iscompared with the experimentsinFig. 2. As shown in

the Figurethe calculatedpressuredistributionshows good
agreement with that by experiment°)includingthe sepa-
ratedregion.Fig. 3 shows CL and Co with a. A good

agreement of Cr.between the calculationsa_d the experi-
ments isobtained.Also theresultsofCo show good agree-
ment with the e.xperiments.Those resultssuggestthat a

discretevortexmethod isquitepowerfulforpredictionof

aerodynamiccharacteristicsofa wing sectionststaticangle
ofattack.

UT =40.2
b

-5.00-

- 4.00-

-3.00-

'- -2.00-

- 1.00-

0.00

1.00-

Experiments

Separation point

a = 20deg

Re= 3.1 × 10_

C I = 1.56

Cd=0.153

Fig. 2 Comparison of pressuredistributionwith experi-
ments(NACA4412, a = 20degrees,Re = 1.0x 10s)

Cl

Fig. 3 Comparision of C_. and Co with experiments

Fig. 1 Instantaneousstream lines(NACA4412, a =
20degrees,Re = 1.0x I0e)

2.3 Separated Flows around an Oscillating Wing Section

The Calculatedresultsofse;at_tedflows aroundpitch-

ing airfoi1(NACA0012)under the conditionof a = 15° +
10°sin_t(k= 0.15) and Reynolds number=l.0 x i06 is

shown in Fig. 4. As shown in the figureseparatedregion
issmallinpitching-upprocessand itbecomes much larger
in pitching-downprocess.Quitedifferentcharacteristicsof

flowpatternsbetweeninpitching-upand pitching-downpro-
cessesareobtained.The resultsshow some featuresofdy-
nmmic stall.The calculatedaerodynamiccharacteristicsare

compared withexperiments_)asshown inFig.5.The calcu-

latedHysteresiscurveofCL show almostsame tendencyas
the experiments.The resultsshow fairlygood agreements
withexperiments.

Another calculationhave been conducted under the

conditionofa = 15°+ 14°siruot(k= 0.1)and Reynoldsnum-
ber=1.0 x 106 asshown in Fig.6.In the Figureseparated
regionissmallinpitching-upprocessand itbecomes much



larger in pitching-down process. Quite different character-
istics of flow patterns between in pitching-up and pitching-
down processes are also obtained. The calculated aerody-
namic characteristics are compared with experiments*) as
shown in Fig. 7. The calculated Hysteresis curve of CL
show almost same tendency as the experiments. The results
show fairly good agreements with experiments qualitatively.
The results show C_ of oscillating airfoil shows higher max-
imum value compared with that of a stationary airfoil.

Those calculated results show qualitatively good agree-
ment with e.xperiments and excellent capability of the
method is proved. Also as the computation time for each cal-
culation is quite small compared with those of other finite-
difference methods, the method is quite useful for the first
estimation of the aerodynamic characteristics of a new wing
section.

3. Numerical Simulation of D_'namic Stall
by Viscous Flow Calculation

3.1 Numerical Procedu_e_

Unsteady flows of viscous incompressible fluid flow
around a airfoil is considered. The governing equations are
equations of continuity and incompressible Navier-Stokes
equations:

divV = 0 (4)

av + (V. v)V = -grad p + AV (5)

where Re is Reynolds number. FollowingMAC method

(Marker and Cellmethod)*°_,the Poissonequationforthe

pressurep isderivedby takingdivergenceofEq(5):

Ap = -div(V • v)V + R (6)

where

---_-+ _D , D=divV (7)

Although R inEq.(7)is identicallyzerodue toEq.(1),itis
retainedhere as a correctiveterm in orderto preventthe

accumulationofnumericalerrors.IfV isgivenat certain

time, then the Poissonequation(6) can be solvedto get
p, and then by substitutingthesevalueintoEq.(5),Y" at

next timeiscalculatedfrom Eq.(5).The detailednumerical
procedureswillbe givenin ReferenceII.

For mesh grid generation Steger and Sorenson's
method TM isused.The method isusefultogeneratea body-

fittedmesh system foran arbitrarybody with keepingal-
most orthogonalcoordinatessystem atthe wall.The mesh

system isgeneratedas O-gridtype and quitefinemesh is

preparedinthe vicinityofthe body surface.For thecalcu-

lationof separated flow around oscillating airfoil a general
coordinate system with time-dependent variables is intro-
duced. However in the computation using those coordinate
systems the displacement of the grid point and distortion of
the mesh system for each time interval should be considered
carefully. In the present computation the method proposed
by Nakamichi TM is used.

In the velocity fields non-slip conditions are used for
the wing surface and uniform flow conditions are used for
outer boundary. In the pressure fields zero derivative normal
to the wing surface is used and zero derivative parallel to the
freestream is used at e.xit boundary.

3.2 Separated Flows around an Airfoil at Fixed
Attack An_le

Before the calculations the preliminary calculation has
been conducted for separated flows around circular cylinder
at low Reynolds number in order to check the validity of
the numerical scheme by. the present authorsm. The results
show excellent agreements with experiments. The width of
the separated rebdon and flow patterns are predicted quite
precisely. The results show the present numerical scheme is
quite useful and reliable for incompressible viscous flow.

The mesh system(85 x 61) generated for a wing sec-
tion of NACA0012 is shown in Fig. 8. Quite fine mesh
is prepared in the vicinity of the wing surface and quite
wide range of outer boundary are considered. The separated
flows around airfoil at various attack angle is calculated at
Reynolds number of 300. The representative results of in-

Fig.8 Mesh system (NACA0012;IMAX=85, JMAX=61)



(a) _ = 140
(c) or = 20°

Fig. 9 Comparison of Flow patterns(instantaneous stream
lines) between c_lc_lations and experiments(Alurranum
powder) (NACA0012; Re=300)

(b) or : 160

time ,, 18.0

Fig. 10 Comparison of flow patterns(electrolytic pre-
cipitation pictures) between calculations and experiments
(NAOA0012; Re=300, a = 20°)



stantaneous stream lines are compared with experimental
results obtained by the present authors as shown in Fig. 9.
The results show excellent agreements with experiments at
various attack angle. As shown in the Figures separated
region become large as attack angle is increased. In the
present conditions separated shear layer forms a vortex and
convects in the freestream. Karman .vortex shedding pattern
is observed behind an airfoil section. A separated shear layer
shed from the trailing edge forms another vortex and rolls up
behind a airfoil and convects downstream. The flow is quite
periodic and those flow patterns repeat at every interval.

The separated flow patterns can be also visualized by
the electrolytic precipitation method. Fig. 10 shows com-
parison of calculated electrolytic precipitation picture and
that obtained by the experiments. In the calculation nu-

rnerons marker particles are introduced in the vicinity of
the airfoil surface at some time interval and their temporal
traces, which are induced by the velocity fields, are calcu-
lated. Those traces form streak lines of the flow fields. A

Crank-Nicolson's implicit time integration is used in order
to get accurate temporal resolution. The results show the
numerical streak lines , i.e. numerical electrolytic precipi-
tation pictures, is quite useful in order to understand the
structure of the flow fields and compare the calculated re-
sults with experiments.

3.3 Separated Flows around an Oscillatin_ Airfoil

In the previous section the numerical scheme used in
the present calculation is proved to be quite useful and reli-
able, the unsteady flow fields around a oscillating airfoil in
pitch are calculated by moving a grid system relative to the
freestream. The flow conditions are selected from the ex-
periments conducted by the present authors. The center of
rotation is located at 25 percent of the chord and an airfoil
section of NACA0012 is oscillated sinusoidally in pitch at
reduced frequency of k = wc/2U = 0.2 and Reynolds num-
ber of 7.0 x 10 4. c is a chord length and U is freestream
velocity.

The representative calculated results under the condi-
tion of a = 12°+4°sire,A, k = 0.2 and Reynolds number=7.0
x 104 is shown in Fig. 12. Instantaneous stream lines and
numerical smoke wire diagrams are shown in the Figures.
For the calculations of numerical smoke-wire picture nu-
merous fluid particles are introduced at equi-spacing points
along a perpendicular axis, which is set in front of an airfoil
for several time interval and their temporal traces, which are
induced by the velocity fields, are calculated. Those traces
form streak lines and a numerical smoke-wire picture is ob-
tained. A Crank-Nicolson's implicit time integration is used

time ----84.82 a = 15.80" up time = 87.96 a = 15.80" down

time ----81.68 a = 14.35" up time = 91.11 a = 14.35" down

time -. 78.54 a = 12.00" up time = 94.25 a = 12.00" down

(a) Instantaneous stream lines

Fig. I1 Calculated flow patterns(NACA012, a = 12°+ 4osinwt(k = 0.2), Re = 7.0 x 104)
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Fig. 11 (b) Numerical smoke-wire picture

in order to get accurate temporal resolution. The results
show the numerical smoke-wire pictures are quite useful in
order to understand the structure of the flow fields and com-

pare the calculated results with experiments.
As shown in the figure separated region is small in

pitching-up process and it becomes large in pitching-down
process. _ulte different characteristics of flow patterns be-
tween in.pitching-up and pitching-down processes are ob-
tained. The significant change of the flow patterns in
pitching-up and pitching-down process show the existence of
the Hysteresis of the aerodynamic characteristics. The hys-
teresis curve of aerodynsanic characteristics of Cr and Cu
at the same condition are shown in Fig. 13. In particular
C_ at higher attack angle than the stalling angle of this air-
foil section keeps higher value, then decreases rapidly. The

results shows remarkable characteristics of dynamic still.

4. CONCLUSIONS

Dynamic stall phenomena have been simulated numer-
ically by a discrete vortex method and viscous flow calcula-
tions and major results of using both numerical efforts aze
discussed. The major conclusions of the present study are
summarized as follows:

In the calculations by a discrete vortex method com-

bined with a panel method the potential flows around wing
sections aerodynamic characteristics of dynamic stall is cal-
culated properly and a hysteresis of lift of airfoil at dynamic
stall is obtained. The results suggest that the method has a
excellent capability of simulating vortical flows with excel-
lent small computation cost.

In the calculations by viscous flow calculations sepa-
rated flows around oscillating airfoil in pitc!_ are simulated
by using the third-order upwind scheme and a moving mesh
system. The calculated separated region is small in pitching-
up process and it becomes large in a pitching-down process.
Quite different characteristics of flow patterns between in
a pitching-up and pitching-down processes and hysteresis
curveof aerodynamic characteristics are obtained.
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ABSTRACT

Many operational limitations of helicopters and other rotary-wing aircraft are due to nonlinear
aerodynamic phenomena, including unsteady, three-dimensional transonic and separated flow near
the surfaces and highly vortical flow in the wakes of rotating blades. Modern computational fluid
dynamics (CFD) technology offers new tools to study and simulate these complex flows. However,
existing Euler and Navier-Stokes codes have to be modified significantly for rotorcraft applications,
and the enormous computational requirements presently limit meir use in routine aeslgn
applications. Nevertheless, the Euler/Navier-Stokes technology is progressing in anticipation ot
future supereomputers that will enable meaningful calculations to be made for complete rotoreraft
configurations.

I. INTRODUCTION

The flow fields of helicopters and other rotorcraft
provide a rich variety of challenging problems in applied
aerodynamics. Much of the flow near the rotating blades
is nonlinear, three-dimensional, and often unsteady, with
periodic regions of transonic flow near the blade tips, and
with dynamic stall pockets inboard. The blades also shed
complex vortical wakes, and detrimental aerodynamic
interactions often arise between the major rotating and
nonrotating components.

In recent years, CFD methods for isolated, nonlinear
pieces of the overall problem have been developed to
complement the mixture of analytical and empirical
aerodynamic theories, wind tunnel data, and design charts
traditionally used by helicopter engineers. References 1,4,
for example, describe some of these modern
developments, and the present author highlighted the
activities of some of his colleagues in Ref. 5, as they
existed in 1988. This paper rep.resents a brief review and
update of those efforts descrtbed in Ref. 5, with some
additional discussion of the challenges that remain to our
long-term goal of obtaining complete numerical
simulations of realistic rotoreraft flow fields with as few
physical approximations as possible. It must be
emphasized that no attempt is made in this paper to
review the bulk of research underway in this field; only
the work of the author's immediate colleagues is
described herein. Thus, more activities are neglected than
included.

As can be gleaned from Refs. 1-5, many different
levelsof sophistication' of CFD technologycan be and
are being gainfullyappliedto practicalrotorcraft
problems.The approachfollowedhere,which isby no
means unique(cf.Refs.4,6-I0),istodevelop,adapt,and
applyadvancedEuler/Reynolds-AveragedNavier-Stokes
methodologyto the specialneedsof futurerotorcraft.
While the near-termutilityand practicalityof this
approach may be open to debate,the historyof
supercomputer growth and the contributionsof
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advanced CFD teelmiques to fixed-wing aircraft suggest
that improved predictive tools arc highly desirable for all
flight vehicles. Such methodology should help to reduce
the risks and testing requirements for new designs, and it
should enable engineers to increase rotorcraft
performance, efficiency, and maneuverability while
reducing noise, vibrations, and detectability.

In the following section, a very brief description is
given of the methods that are currently being developed
and usedby theauthorand hiscoworkers.Insubsequent
sections,some representativeexamplesofrecentresults
aregiven,alongwithdescriptionsofsome ofthemajor
issuesthatremainunresolved.

IT. NUMERICAL METItODS

Two different approaches are currently being
pursued to solve the compressible Euler or Reynolds-
Averaged Thin-Layer Navier-Stokes equations for
aerodynamic configurations that consist of rotating lifting
surfaces and nonrotadng airframe components. The first
approach employs several finite-difference, implicit
approximate-factorization algorithms, with algebraic
turbulence modeling, to solve the governing equations in
strong conservation-law form [11] on either single- or
multiple-block, body-conforming structured grids. The
single-block code is called TURNS (Transonic Unsteady
Rotor Navier Stokes), which is described in Ref. 12 and
which borrows heavily from Obayashi's work [13]. This
numerical scheme uses upwind-biased flux-difference
splitting, an LU-SGS implicit operator, higher-order
MUSCL-type limiting, and, in the ease of unsteady
calculations, Newton sub-iterations at each time step.

The current multi-block implicit code is called
OVERFLOW, a new code being developed by Dr. Pieter
Buning at the Ames Research Center, using elements of
F3D [14] and ARC3D [15]. OVERFLOW currently has a
two-factor, block tridiagonal option with upwind
differencing in the streamwise direction, as in F3D, and a
three-factor, scalar pentadiagonal option with central
differencing, as in ARC3D. OVERFLOW uses the
Chimera overset-grid scheme [16] to subdivide the



computationaldomainintosubdomains,someof which
maymoverelativetoothers.

Solution-adaptivegridsarenotcurrentlyusedin the
three-dimensionalversionsof either TURNS or
OVERFLOW,althoughthistechnologywill bepursuedin
the future.TURNShasbeenusedto computethe
aerodynamicsandacousticsof isolatedrotorblades,and
OVERFLOWhasbeenappliedto fuselagesandwing-
bodycombinations.TheChimera overset-grid method is
currently being combined with TURNS to improve the
resolution of vortical structures in the wakes of rotor
blades, and OVERFLOW with Chimera is beginning to be
applied to rotor-body interactions.

Body-conforming C-O or C-H structured grid
topologies are normally used in TURNS and
OVERFLOW, with from approximately 100,000 to
1,000,000 grid points. Figure 1 shows a typical C-H grid
for aerodynamic calculations. The grid lines are nearly
orthogonal at the surface, and the grid spacing normally
starts at about 0.00002 - 0.00005 chord in the normal
direction. Figure 2 illustrates the distortion of the grid in
the H, or spanwise, direction that is typically used for
acoustic calculations. For these applications, it is
important to align the grid lines with linear characteristics
beyond the tip of the rotor, in order to capture the low-
level radiating sound waves.

The second approach uses a solution-adaptive
unstructured-grid subdivision scheme developed by
Strawn [17], incorporating the explicit upwind finite-
volume flow solver of Barth [18]. The code contains an
efficient edge data structure for computational domains
comprised of arbitrary polyhedra, which are subdivided in
regions of high fiowfield gradients to Improve the
solution. Barth's method uses a reconstruction scheme in
each control volume that is exact for linear variations, and
the reconstructed polynomials are flux-limited in regions
of flow discontinuities. The explicit time operator is a
four-stage Runge-Kutta method with local time stepping
for steady problems. The motivation for this adaptive-grid
approach is to convect vortical flow regions with minimal
numerical dissipation, but it shows promise in convecting
low-level acoustic waves, as well. Thus far, only the Euler
equations have been solved by this method.

The adaptive-grid calculations normally start on a
coarse structured grid. Error indicators, based, for
example, on density gradients near the edges of the blade
or on vorticity in the wake, determine which tetrahedra
volume elements are to be subdivided into eight smaller

agreement with experiments, but the computed peak
suction levels on the upper surface of the wing very near
the tip were not as high as the measured ones, Fig. 3.
More recently, Strawn [17] found similar discrepancies in
his unstructured-grid calculations, in addition, Strawn
found the calculated peak velocities in the vortex itself to
be substantially less than recently reported by McAlister
and Takahashi [21], although Strawn's computed vortex
dissipated very little as it convected downstream. In
unpublished work, Srinivasan has re-computed this
problem on finer grids with his structured-grid code, with
similar results. Thus the cause of the discrepancy remains
undetermined, but it appears that even finer grids and/or
better turbulence models may be required to resolve this
issue. This, in turn, has important implications for the
problem of computing rotor blade-vortex interaction
accurately, as described below. The tip-vortex formation
problem is currently being studied computationally by Dr.
Jennifer Daeles-Mariani at the Ames Research Center, in
conjunction with a new experimental program [22]
designed to shed further light on the physics of this
phenomenon.

Despite these limitations, the existing Navier-Stokes
technology can provide useful information about the
performance of modern blade tips. For example, Duque
[23,24] has studied the unusual British Experimental
Rotor Program (BERP) helicopter blade under
nonrotating conditions, and he has computed the
complex separation patterns that develop at :high
incidence. Figure 4 shows some of these results at low
Maeh number, in comparison with experimental oil-flow
patterns. He also obtained excellent agreement with
measured pressure distributions everywhere except in the
immediate vicinity of the tip.

Hover

The axial symmetry and nominally steady-state
conditions in blade-fixed coordinates make' hovering
flight of isolated rotor blades an attractive starting point
for developing rotorcraft codes. Forerunners of the
TURNS code were developed and applied to this problem
by Srinivasan, et al [25"1and Chen, et al [26]; these efforts
were summarized in Ref. 5. Reference 25 showed some of
the basic differences between rotating and nonrotating
blades, but the induced flow due to the vortical wake was
approximated by a simplistic model. However, this
restriction was subsequently relaxed by both
investigators [12,27], wherein the solution for the wake
structure was included, or "captured," as part of the

tetrahedra and which ones are to be left alone. "Buffer" overall computation. Here, as in the fixed-wing tip-vortex
elements consisting of partially subdivided tetrahedra are problem described above, the vortical wake structure was
introduced around the fully-subdivided ones. The process sme_ considerably by the coarseness of the grid and
can be repeated until the desired solution accuracy is the attendant numerical dissipation. Nevertheless, the
obtained.References17-19may beconsultedfordetails.

HI. BLADE AERODYNAMICS AND WAKES

Tip Vortex Formation and Convection

The concentrated tip vortex of a rotor blade plays an
important role in the aerodynamics and acoustics of
rotary-wing aircraft; even more so than for fixed-wing
aircraft, since the tip vortex may stay closer to and
directly interact with the rotor or airframe. Calculations
the tip vortex formation and spanwise loading
distribution on a rectangular wing tip, performed by
Srinivasan, et al [20], were found to be in good overall

circulation and nearfield trajectory of the trailing tip
vortex of the blade appeared to be well enough
preserved that the induced inflow was computed
satisfactorily, thus producing reasonable alrloads on the
blade. For example, the surface pressure distributions
reported in Ref. 12 showed acceptable agreement with
experiments. These encouraging results led to recent
studies of more complex rotors, as reported in Ref. 28. For
example, Fig. 5 shows calculations for the Sikorsky UH-
60A main rotor, and Fig. 6 for a blade based on the
Westland BERP rotor. The pressure distributions shown
in Fig. 5 look very good, although the computed tip
vortex structure is smeared and the uncertainty of the
calculated induced and profile power of the rotor is
greater than today's stringent engineering requirements



for determininghover performance. Therefore, these
results should probably only be considered "semi-
quantitative." Of course, the issue of the accuracy of drag
calculations in three-dimensional applications is not
unique to rotorcraft CFD, but it warrants further serious
attention for applications such as these.

The ongoing application of the TURNS code to
hovering rotors uncovered difficulties with the outer
boundary conditions that were not evident at the
beginning of the study, and which are still not fully
resolved. Unlike a fixed wing, a hovering rotor induces
significant velocities at large distances from the rotor.
However, for economy, one would like to keep the
computational domain as small as possible. In Refs. 12,
25-27, for example, the outer boundaries were placed
relatively close to the rotor, and the characteristic far-field
boundary conditions that were used effectively blocked
flow across the outer surfaces of the computational
domain. Thus the problem simulated in those studies was
a rotor in a solid-wall enclosure, rather than in free air, and
the wake of the rotor tended to recirculate within the
computational "box."

This problem, and large time required for the initial
transients to decay, were recognized by Kramer, Hertel,
and Wagner [29], who used an approximate vortex-
element solution to define an initial solution that
produced flow through the far-field boundaries.
However, a simpler and more economical alternative was
introduced in Ref. 28, using simple momentum theory as a
guide. Namely, the wake of the rotor was assumed to pass
out of the computational box through a circular hole
whose area is half that of the rotor disk, with an outflow
velocity twice the momentum-theory average value
through the plane of the rotor. A characteristic-type
numerical outflow boundary condition was applied
across this exit plane by prescribing this outflow mass
flux, and the other four computational variables were
extrapolated from within. The inflow through the rest of
the outer boundary was approximated by a point sink at
the axis of rotation, whose strength is proportional, again
via momentum theory, to the thrust of the rotor. Here the
pressure was extrapolated from within and the other four
variables were specified. This combination of inflow and
outflow boundary conditions is sketched in Fig. 7.

Figure 8 shows a comparison of the pressure
distributions on a hovering rotor computed with the old
and new outer boundary conditions, from Refs. 12 and
28, respectively. The trace ofparticles released near the
tip, Fig. 9, is assumed to define approximately the
trajectory of the tip vortex. The particle trace computed
with the new boundary conditions exits the lower
computational boundary after about 3-1/2 revolutions of
the blade, and this trajectory agrees well with
measurements. With the old boundary conditions of no
inflow or outflow, the trace is approximately the same for
the first I-I/2 blade revolutions, but then it develops an
irregular path that suggests a developing recirculation
within the computational domain.

Unfortunately, the pressure distributions in Fig. 8 do
not give a clear indication that the new boundary
conditions have improved the solution. This is somewhat
surprising, and also at variance with the usual results of
vortex-element methods, that the alrloads seem to be
relatively insensitive to the details of the far-wake
solutions. As noted earlier, the vortical wake structure of
the Navier-Stokes calculations was smeared considerably
by the coarseness of the grid away from the blade and the

attendant numerical dissipation. However, the circulation
and trajectory of the trailing tip vortex through the first
revolution of the blade appeared to be well enough
preserved that the induced inflow, and hence the airloads,
were computed satisfactorily. But this may turn out to be
fortuitous. It is possible that as the grid in the wake is
refined and the fidelity of the tip vortex solution
improves, the computed blade airloads will become more
sensitive to the details of the wake trajectory and
structure. This aspect of the hover wake problem clearly
warrants further investigation.

Improved Vortex Wake Calculations

The issue of the fidelity of the wake solutions
indicates the need for significant improvements in grid
resolution and higher-order accuracy in the flow solver.
As mentioned above, Dr. Roger Strawn and coworkers
are developing solution-adaptive, unstructured-grid
subdivision techniques to add grid points selectively in
the wake [17,19]. Again, the current model problem is a
hovering rotor blade. Initial calculations on a coarse,
structured grid are used to determine where to subdivide
the computational elements near the edges of the blade
and in the wake. Preliminary results for an initial coarse
grid are shown in Fig. 10 for the same rotor shown earlier
in Figs. 8 and 9. Results with adaptive-grid refinement in
the wake will be presented in Ref. 19.

As the wake structure is essentially inviscid, Strawn
and Barth [19] have only solved the Euler equations for
this problem up to now. The computational cost per time
step per grid point is greater with this approach than with
the structured-grid TURNS code. However, the efficiency
gained by adding and deleting grid points only where
they are needed, based on the errors in the local solution,
promises to provide an improved resolution of the wake
structure at a net savings in computer costs.

An alternative solution-adaptive scheme using
structured grids is being developed and applied to the
rotor wake problem by Earl P.N. Duque [30]. He is using
the Chimera overlapped multiple-grid method [16] at the
interface between various structured-grid blocks, each of
which is designed to capture a particular region or feature
of the flow. Figure I I shows preliminary results for the
same two-bladed rotor in hover, using three coarse-grid
blocks. One grid block is fitted to each blade, to capture
the flow features near the blades, and these rotate with a
third global block, which has grid clustering designed to
convect the wake with minimum dissipation. Essentially,
the embedded rotor grids act like internal boundary
conditions to the cylindrical wake grid, and the wake grid
acts like a far-fidd boundary condition to the blade-fixed
grids. Additional calculationswill be presented in Ref. 30.

Blade.Vortex InteractionO)VI)

The interaction of a rotor blade with the trailing tip
vortex of another is a common event for helicopters, and
this interaction is an important source of noise and
vibrations. The contributions of two-dimensional Navier-
Stokes computations to this problem were reviewed in
Refs. 5 and 31. At that time, the near-field properties of
airfoil-vortex interaction appeared to be well understood
and properly accounted for in numerical simulations.
Since then, Baeder [32] has completed a detailed study of
the acoustic field generated by 2-D interactions of a
prescribed vortex with an airfoil, concluding that the
Maeh number, vortex strength, and miss distance ate the



most important parameters affecting the radiated noise.
His results indicate that the noise is relatively
independent of the airfoil geometry, thus contrasting with
the hopes of many in the helicopter community, who
continue to search for a low-BVI-noise blade section.
Definitive experiments to settle this issue are planned for
the near future at the Ames Research Center.

Three-dimensional interactions of a prescribed vortex
with a rotor blade were computed by Srinivasan and
McCroskey [33] using an early version of the TURNS
code. Representative results are shown in Fig. 12. The
test case here is a two-bladed rotor downstream of the tip
of a wing in a wind tunnel [34]. The rotor is nominally
nonlifting, except for the interaction with the
concentrated vortex generated by the wing tip upstream.
In this configuration, the approaching vortex is well
defined experimentally, and this structure is prescribed in
the computations; thus the modeling or computing of the
conventional helicopter rotor wake is not an issue here.

For the conditions of Fig. 12, the flow field near the
blade tip develops a shock wave on the advancing blade
before the blade-vortex encounter in the sec0nd
quadrant of the rotor, and the decay of this shock is
intertwined with the interaction shown in the figure. The
calculations agree fairly well with the measurements. This
oblique BVI is qualitatively similar to 2-D or "parallel"
interactions in many ways, but important quantitative
differences exist. Namely, the interaction is spread out
over a larger azimuthal travel of the blade, and the
fluctuating loads at a given radial station appear to be
weaker.

AlthoughfurtherrefinementsintheseNavier-Stokes
computationsaredesirable,themain unresolvedissuein

computing3-D BVI isnow theaccuratesimulationofthe
vortlcalstructuresapproachingthe blade.That is,
improvements in the Vortex wake calculations,as
discussedin the previoussection,have become the
pacing item in this important aspect of rotor
aerodynamics.

IV. ROTOR ACOUSTICS USING CFD

Impulsive-like pressure fluctuations that radiate from
rotorbladesrepresentan annoyingsource ofnoisethatis
difficult to calculate. One major source of impulsive noise
is the blade-vortex interaction (BVI) phenomena
describedabove;itsaccuratepredictiondependson both
the correct description of the vortical wake approaching
a blade element and on the local details of the interaction
itself. Another source is called High-Speed Impulsive
(HSI) noise, which is caused primarily by compressibility
effects. It can be accentuated by the phenomenon on
transonic rotor tips known as delocalization, wherein the
supersonic pocket on the rotor blade extends to the far
field beyond the blade tip.

The influence of rotor lift and wakes on HSI noise is
considered secondary [35], and Srinivasan and Baeder
[36] have indicated that viscous effects are also
secondary. Therefore, this source of noise can be
investigated for nonli._g transonic configurations using
an Euler formulation. On the other hand, the level of the
radiated pressure fluctuations drops off inversely with the
distance from the effective source, so that the real noise
gets quickly lost in the "computational noise" away from
the body unless special precautions are taken in the
numerics.

Baeder [36-38] has combined high-order-accurate
versions of the Euler TURNS code with the special grid-
cluster techniques illustrated in Fig. 2 to produce new,
high-precision, unified aerodynamic and acoustic results
for HSI eases, out to several rotor radii. Some of his hover
results are shown in Figs. 13 and 14. These results are the
most successful to date for both waveform and veak
pressure levels over a range of tip Math numbers. They
are now available as computational data bases, with
greater detail and precision than available experimental
results, for use by acousticians developing simpler, more
approximate theories and models.

Forward flight is more challenging, as the solutions
must be time accurate, and the characteristics along which
the outgoing waves propagate are no longer fixed with
respect to the blade. Nevertheless, Baeder [37] has used
the TURNS code and grid clustering along selected linear
characteristics to begin to investigate rotors in forward
flight at tip-Macb-number conditions below and above
that required for delocalization. The overall picture of the
wave propagation for a nonlifting, untwisted rotor blade
agrees well with what can be qualitatively inferred from
wind tunnel measurements. Detailed comparisons have
been made with experiments at specific microphone
locations away from the rotor, as shown in Fig. 15, with
good results for the case without delocalization.

The quantitative agreement is less satisfactory at
advancing-tip Math numbers above delocalization, as
shown in Fig. 16, where the acoustic waves seem to be
more sensitive to the basic parameters of the rotor. It
should be noted that the measurements shown in the

,Ussorewere obtained for lifting rotors with twisted blades.
, there is some disagreement between measurements

in a wind tunnel and those obtained in flight tests; these
differences are discussed in Ref. 39. In any case, Baeder's
calculations represent a significant advance, andthey
demonstrate the feasibility of using a unified CFD

roach to examine nonlinear acoustics of rotors.
wever, they also suggest that further validation should

be done for additional cases, that the actual blade
conditions should be modeled more exactly, and that
improvements in time-varying grids, including solution-
adaptive techniques, will probably be required to obtain
the quality of the hover results in Figs. 13-i4.

V. TOWARD ROTOR-BODY INTERACTIONS

The aerodynamic interaction between rotating and
nonrotatingcomponentsof rotary-wingaircraftis widely
recognized as an importantfeaturethat produces
considerableadditionalcomplicationsforCFD analyses.
Unfortunately,measurableprogresson thisimportant
topichasbeenslow,consistingmostlyofconceptualizing
and developingviablegrid-interfacestrategies.

However, as an intermediatestep,Dr. Sharon
Stanaway has developed an efficientmethod for
embeddingan actuator-diskrepresentationofa rotorina
computationaldomain surroundingan arbitrarybody.
The methodusestheFortifiedNavierStokestechniqueof
Van Dalsem and Steger[40]to introducea prescribed
pressurejump, which may vary with time and space,
acrossan internalboundary(theactuatordisk).Thisis
similarto the work of Rajagopalan[10],in which a
momentum source term is added to the governing
equations,causinga pressurejump atinternalboundary
points.The techniqueisintendedto allowsimplified



studies of the effect of the wake of a rotor on a nearby
fuselage or wing, for example. The actuator disk will
eventually be replaced by a finite-difference simulation of
the rotor, as indicated in Fig. 17. A number of fuselage
calculations have been performed in support of the rotor-
body experiment of Norman and Yamauchi [41], but these
have not been completed.

Another unpublished early application of this
technology by Dr. Stanaway is illustrated in Fig. 18. This
ducted-rotor model problem is an approximation of the
novel Sikorsky Cypher unmanned aerial vehicle [42],
which resembles a flying doughnut with two
counterrotating rotors. The figure shows Mach contours
on planes taken through the center of a toroidal body of
circular cross section, with and without a thrusting rotor
system spanning the inside of the toroid. The direction of
the oncoming flow is indicated in the figure; the flow
fields are axisymmetric in this example of vertical climb.
The solution without the actuator disk, in the left haLf of
the figure, exhibits the expected behavior of a pair of
circular cylinders in a two-dimensional crossflow. The
effect of the thrusting rotor is to accelerate the flow
through the middle of the toroid, to move the stagnation
point inward, and to alter the pressure distribution and
separation point location significantly.

In a third preliminary and unpublished study, Dr.
Venkat Raghavan is adapting the OVERFLOW code to
the V-22 Osprey tiltrotor aircraft, with initial emphasis on
the high-speed cruise configuration, or turboprop mode,
of this vehicle. Figure 19 illustrates the surface and
volume grids being developed for this problem, using
OVERFLOW with Chimera. Progress to date includes full-
potential and Navier-Stokes solutions for the wing-
fuselage combination. The viscous results (not shown)
demonstrate separated flow on the rear portion of the
lower fuselage, whereas the inviscid results do not, of
course. The addition of the aforementioned actuator-disk

representation of the rotor is the next logical step in this
progression toward a simulation of the complete aircraft.

VL CONCLUDING REMARKS

This paper has attempted to describe the progress
made in the last four years by the author and his
coworkers, and some of the current limitations and
problems. As one of several teams actively working in the
field of rotorcraft CFD, we are pursuing the
Euler/Reynolds-Averaged Navier-Stokes approach, with
growing emphasis on rotor wakes and rotor-body
interactions. The examples shown are mostly for the
aerodynamics and acoustics of rotors in hover, but the
primary long-term goal is to develop improved predictive
capability for forward flight. Solution-adaptive
structured- and unstructured-grid methods are under
development for improved wake capturing and acoustics,
and variations on the Chimera overset gridscheme appear
to be the most promising ways of treating rotor-body
interactions.

In concluding his 1988 review [5], the author wrote,
"The rotorcraft industryappears to be entering a new era
in which computational fluid dynamics will play an
increasingly important role in the design and analysis of
advanced aircraft." Although the extent of CFD
contributions to the new rotary-wing aircraft that have
appeared since then may not have been overwhelming,
the number of rotorcraft CFD papers in the technical
literatureby industryauthorshasrisendramatically.Since

1988, airfoil codes have improved significantly and are
being used more. AIso, the transonic aerodynamics of
advancing-blade tips is being computed by a v.ariety, of
methods with adequate precision for engmeenng
applications, and these capabilities are beginning to be
used in industry. Furthermore, accurate simulation of
high-speed impulsive noise within a few radii from the tip
of the blade now appears to be possible in those cases
where wake effects are negligible. A logical next step is
to try to extend this capability to the more difficult
problem of blade-vortex interaction noise.

There has also been significant progress in CFD
algorithms, grid techniques, and supercomputer
technology during the past four years. However, much
remains to be done in each of these areas to bdngCFD to
the state where it can be used as successfull_ for
rotorcraft as for fixed wing aircraft. An accurate f'mite-
difference simulation of the complete flow field about a
helicopter is still not feasible. Wakes and blade-vortex
interactions are not well predicted, and retreating-blade
stall remains virtually untouched by the CFD community.
The principal limitations remain the computer hardware
costs, speeds, and memory capacities; algorithms and
solution methods; grid generation; turbulence models;
and accurate vortex-wake simulations. In general, today's
rotorcraft CFD codes are not robust, they have not been
exercised enough nor validated adequately, and they
remain awkward to use. All of these factors undoubtedly
;discourage the user community from working with what
is available. Nevertheless, the technical challenges are
exciting and the potential payoff of future CFD
developments remains well worth pursuing.
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Fig. 1 Representative C-H grid topology for a rotor blade, showing the grid in the plane of the blade.

Fig. 2 Representative grid in the plane of the rotor blade for computing acoustic waves.
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i. /2_TRODUCTION

Experimental and computational
investigations of the dynamic stall

phenomenon continue to attract the attention

of various research groups in the major
aeronautica_ research laboratories. There
are two reasons for this continued research

interest. First, the occurrence of dynamic
stall on the retreating blade of helicopters
imposes a severe performance limitation and

thus suggests to search for ways to delay
the onset of dynamic stall. Second, the lift

enhancement prior to dynamic stall presents
an opportunity to achieve enhanced

maneuverability of fighter aircraft. A

description of the major parameters
affecting dynamic stall and lift and an

evaluation of research efforts prior to 1988
has been given by Cart [1].

Unfortunately, the basic fluid physics
underlying the dynamic stall phenomenon is
still far from being fully'understood. This

is due to the difficulty of making
sufficiently detailed measurements on fast

moving airfoils so that the processes
leading to unsteady flow separation, vortex

formation/propagation, and unsteady flow
reattachment can be identified. These

processes are further complicated by the
possibility of shoc_ formation and unsteady
shock/boundary layer interaction as the
free-stream Mach number is increased. The

development of reliable computational

prediction methods, in turn, isdependent on

the availability of sufficiently detailed
flow information about the dynamic stall
processes.

In this paper the authors' recent

progress in the development of experimental
and computational methods to analyze the
dynamic stall phenomena occurring on NACA

0012 airfoils Js reviewed. First, the major

experimental and computational approaches
and results are summarized. This is followed
by an assessment of our results and an
outlook toward the future.

2. EXPERIMENTAL PROGRESS

"In this section we summarize the

experimental results obtained in the

Compressible Dynamic Stall Facility of the
NASA Ames Fluid Mechanics Laboratory since
our last review [2]. Additional details

* Navy-NASA Joint Institute of Aeronautics
Naval Postg_'aduate School, Monterey, CA

# U.S. Army Aeroflightdynamics Directorate
and Fluid D_amics Research Branch
NASA Ames R_search Center
Moffett Field, California

about this facility and the experimental

techniques used in these experiments can be
found in references [3-9]. All the
measurements described in this section were

obtained on a I_ACA 0012 airfoil of 7.62 cm

(3 inch) chord subjected to sinusoidal pitch

oscillations about the quarter-chord point
or to a ramp-change in angle of attack. The
maximum frequer:cy achieved was I00 Hz, the

maximum pitch rate 3600 degrees per second.
The Reynolds number ranged between 200,000
to 900,000. Further details can be found in
the cited references.

2.1 Effect of Mach Number and Pitch Rate on

Dynamic Stall

A series of experiments was performed
to determine the effect of Mach number and

pitch rate on the dynamic stall initiation
and evolution. To this end stroboscopic

schlieren pictures were taken over a Mach

number range from 0.2 to 0.45, a non-
dimensional pitch rate range from 0.02 to
0.05 for airfoils undergoing a ramp change

in angle of attack, and a reduced frequency
range of 0.025 to 0.1 for airfoils in

sinusoidal pitch motion. The non-dimensional
p_tch rate is defined as the pitch rate
(radians/sec) x chord / free-stream speed.

The reduced frequency is defined as
frequency of oscillation (Hz) x pi x chord

/ free-stream speed.

Figure 1 shows the observed vortex

release angles for ramp and slnusoidal
motions as a function of Mach number and

pitch rate or reduced frequency. The

following trends are clearly discernible:
a) an increase in reduced frequency delays
the onset of dynamic stall to higher angles
of attack

b) at free-stream Mach numbers greater than
0.3 compressibility effects are significant,

producing drastically reduced stall onset
angles of attack.

2.2 Visualization of Leading-Edge Details

Using the stroboscopic schlieren
technique [3] locally supersonic flow near
the leadlng edge could be successfully
identified in a number of cases. For

example, Figure 2 shows the leading edge
flow details for a free-stream Mach number

of 0.45 as the airfoil is pitching upwards
at a non-dimensional pitch rate of 0.0313

through an angle of attack of 12.6 degrees.
Several discontinuities are clearly visible
within the first 5 - 8% chord distance. At

this Mach number locally supersonic flow ls
reached (verified by interferometry).
Therefore these discontinuities most likely

are caused by the formation of weak multiple
shocks due to the recompression and the
interaction with the boundary layer.



Eventually, these weak interactions are

followed_ by _ stronger shock which
recompresses the-Tlow to subsonic values.
Similar stroboscopic schlieren pictures were

obtained over a range of angles of attack
from 12.2 to 12.9 degrees for the same free-
stream Mach number and pitch rate.

Another interesting observation is the

formation of multiple vortices under certain
circumstances rather than the roll-up into

a single dynamic stall vortex. Figure 3

presents an enlarged schlieren picture for
a free-stream Mach number of 0.25, as the

airfoil pitches at a pitch rate of 0.025
through an angle of attack of 16.5 degrees.
Two clockwise vortical structures can be
identified. Multiple vortices were observed

only at low pitch rates and low Mach
numbers, whereas at higher Mach numbers a

single dynamic stall vortex was seen to
form.

2.3 Quantitative Measurements of Dynamic
Stall Onset

A more quantitative determination of

the leading edge flow details and therefore
of the dynamic stall onset mechanism is made
possible by means of point diffraction
interferometry [6]. Typical interferograms
obtained with this technique are shown in

Figures 4 for the NACA 0012 airfoil

oscillating at a reduced frequency of 0.05
in a M-0.33 flow. In these interferograms

the fringes (t_e alternating dark and light

lines in the photoraphs) denote lines of
constant Mach number [7]. In Figure 4a, the
flow over the airfoil at an angle below

stall is presented for an angle of 10

degrees. Note the fringes which leave the
leading edge turn parallel to the surface,
and then abruptly turn towardthe surface of
the airfoil once more. As explained in [6],

this pattern is indicative of a laminar
separation bubble. In contrast, Figure 4b
shows the onset of dynamic stall as the
airfoil oscillates through an angle of

attack of 13.6 degrees. The fringes no

longer rapidly curve back to the surface
near the leading edge. Instead, they are

displaced aft until, further downstream,
they again turn normal to the surface,

denoting the development of a dynamic stall
vortex. Furthermore, the fringe patterns
indicate that the dynamic stall develops

from a region of strong gradients which
encloses a low energy region, in contrast to
the symmetric density field one would expect
from a classical vortex.

Further quantification of the flow
field around the leading edge is made

possible by ,Zigital processing of the
interferograms [7]. Using a specially
designed, screen-orlented digitizing program

fringe contour maps, as shown in Figure 5,
could be obtained. As noted above each

fringe is a line of constant density, and
thus also of constant Mach number.

Therefore, the fringe maps can be used to

quantify the effect of unsteadiness on the
local pressure distributions. Figure 5 shows

the fringe pattern differences near the
leading edge of the NACA 0012 airfoil in a
M=0.33 flow at i steady 10 degrees angle of
attack versus the case of oscillation at

kffi0.1 when the airfoil passes through the

same angle of attack. It can be seen that a
separation bubble starts to develop in the

steady case while no such development occurs
as yet in the oscillating case. Figure 6
shows a plot of the suction peaks determined
from the fringe maps [7] for several Mach
numbers and reduced frequencies. It is seen

that a maximum suction pressure coefficient
of -4.96 is reached at M-0.3 (corresponding

to a Reynolds number of 540,000) for three
different values of reduced frequency

k=0.05, 0.075 and 0.10, thus suggesting that
stall develops once the suction pressure
reaches a maximum value, independent of

reduced frequency. This value is reached at
progressively higher angles of attack with

increasing frequency. Figure 7 shows the
leading edge pressure distributions inferred
from the fringe patterns as a function of

reduced frequency. Again, it can be seen
that the development of leading edge

pressure gradients is delayed due to the
airfoil oscillation. This supports the

suggestion that stall delay is brought about
by the lag in pressure build-up due to
invlscid unsteady flow effects. It remains
to be seen whether this is the dominant

effect. This point will be addressed further
in section 3.2. Furthermore, it is

noteworthy to observe from Figure 6 that the
maximum suction pressure coefficient
decreases as the Mach number is increased.

Additional flow field information about

the dynamic stall onset mechanism was
obtained by means of laser-doppler
velocimetry [8]. Figure 8 shows the
distribution of the axial and normal

components of the velocity vectors in the

separation bubble which has formed on the
NACA 0012 airfoil as it oscillates in a

M-0.3 flow at a reduced frequency of k=O.05
with an amplitude of 10 degrees about a mean

angle of 10 degrees. The measuring station
is at x/c-0.083, that is very close to the
leading edge. The measured velocity profiles

are plotted as a function of phase angle,
such that a phase angle of 90 degrees
corresponds to zero angle of attack, 180
degrees to 10 degrees angle of attack during

the upstroke and so on. It is seen that at
a phase angle of 160 degrees, corresponding
to 6 degrees incidence on the upstroke,
there is a rapid drop in the u-velocity

component close to the airfoil surface at
y/c-0.067 from values significantly greater
than the free-stream speed to values
somewhat below the free-stream speed. Hence
no flow reversal is observed yet at this

measuring station although reverse flow can

be expected very close to the wall.
Unfortunately, no measurements could be
taken closer to the wall due to the laser

beam configuration used. The v-component of
the velocity vector remains constant until

a phase a_gle of 186 degrees is reached

corresponding to an angle of attack slightly
less than 11 degrees. At a phase angle of



about 200 degrees, (13.4 degrees incidence),
an abrupt increase in the v-component

develops near the leading edge which appears
to be caused by the break-up of the

separation bubble. Very closely spaced
additional measurements [8] showed that the
bubble extends from 0.017 < x/c < 0.167

along the surface and reaches out to about
15% chord.

Further LDV mapping of the flow field
at additional measuring stations revealed

that during the initial part of the upstroke
the flow experiences rapid accelerations

over a large region of the airfoil reaching
instantaneous values 80% higher than the
free-stream value. The corresponding PDI

images confirmed the presence of these large
velocities outside of the separation bubble,
extending over a significant distance normal
to the wall as well as downstream from the

leading-edge. As the airfoil angle of attack

starts to exceed the static stall angle a
wake-like profile develops near the wall as
a result of bubble breakdown.

suction increases with decreasing angle of

attack, down to about 8 degrees incidence.
Near the steady stall angle the suction
reaches a plateau which is indicative of the
bubble formation. This evolution of the

pressure distributions during the downstroke
is shown more clearly in Figure iI. The

measured velocity profiles near the leading-

edge at station x/c=0.083 at i0 degrees and
5.46 degrees during the up and downstroke
are shown in Figure 12. The large hysteresis

effect can clearly be seen at i0 degrees
while at 5.46 degrees the flow is fully
attached and hence no hysteresis is present

any longer.

3. COMPUTATIONAL PROGRESS

In this section we summarize the

computational results obtained since our
last review. Additional details can be found
in references I0 and 11.

3.1 Numerical _olution of the Navier-Stokes

Equations

2.4 Quantitative Measurements of the
Reattachment Mechanism

The previously described three

experimental techniques, schlieren
visualization, point diffraction

interferometry, and laser-doppler
velocimetry, were also used to identify the

detailed flow reattachment process during
the downstroke [9]. The flow condition was
again M=0.3, corresponding to a Reynolds

number of 540,000. The airfoil again
oscillated about a mean angle of 10 degrees
with an amplitude of 10 degrees.

First, schlieren visualization

identified the steady stall angle to be
12.33 degrees, with no measurable hysteresis
effect. In contrast, schlieren visualization
of the flow over the oscillating airfoil
revealed that flow reattachment after

dynamic stall is a continuous process which

extends over a significant range of angles
of attack (from about 14 degrees down to
about 6 degrees in this particular case). At
13.82 degrees on the downstroke, the flow

begins to reattach around the leading-edge
while the remainder of the upper surface
flow is still separated. At I0 degrees,

reattachment has progressed to about 10%
chord from the leadlng-edge. A further
decrease in angle of attack leads to a
further downs cream progression of the

reattachment while a separation bubble
starts to form near the leading-edge. A

further decreaEe in angle of attack tends to
shrink the separation bubble which finally
vanishes at about 6 degrees, This sequence
of events is shown schematically in Figure
9. Additional point diffraction and LDV

measurements lend further support to this
scenario of evolution of the reattachment
process, Figure 10 shows the maximum suction
pressure histoEy during the downstroke. As

reattachment progresses, the leading-edge

The thin-layer approximation of the
Navier-Stokes equations in conservation law
form, written for an inertial reference

frame, was used. All quantities were
discretized at every node using finite

differences. The physical space points were
mapped tothe computational domain points by
means of a generalized coordinate

transformation. For the time integration the
implicit trapezoidal rule was used. After
linearlzation and space discretization the
space integration was performed with the

Beam-Warming, factorized, iterative
algorithm. A Jameson-type blended second and

fourth-order dissipation term based on the
computed pressure field was incorporated to

suppress high-frequency numerical
oscillations and to enable capturing of
shocks. For subsonic shock-free solutions

only the fourth-order dissipation was used.
In addition, an implicit fourth-order

smoothing was used on the left side of the
equations for numerical stability. Both the

implicit and explicit dissipation were
scaled by the spectral radius and with the
time step. The latter scaling makes the
steady-state solution independent of time

step. Since the added dissipation terms
modify the original partial differential
equation the dissipation coefficients were

kept as small as possible for unsteady
computation. Elimination of the error
introduced by the linearization and

approximate factorization may be
accomplished by performing Newton
subiterations to convergence within each
time step.

The boundary conditlons were specified
as follows. At the outer boundaries zero-

order Riemann invarlant extrapolation was
used. On the airfoil surface the non-slip
condition was applied for the velocitles, and

the density and pressure were obtained from

the interior by simple extrapolation. For



the C-type grids used in this investigation

averaging of the flow variables across the
wake-cut was incorporated.

Fully turbulent flow calculations only

were performed by implementing three
different turbulence models into the above-

described numerical code. These were the

Baldwin-Lomax and the RNG algebraic eddy

viscosity models and the one-equation
Johnson-King model. For a more detailed
description of these models we refer to [11]

and to the original references contained
therein.

3.2 Computation of Dynamic Stall Onset

A series of calculations was performed
with the above described Navier-Stokes code

in combination with the Baldwin-Lomax

turbulence model to investigate the
evolution of dynamic stall in response to a
ramp-change in angle of attack of a NACA

0012 airfoil. The Reynolds number was chosen
to be sufficiently high so that fully

turbulent flow could be assumed. Figure 13
shows the computed flow field as the airfoil
pitches through an angle of attack of 17

degrees in a M-0.4 and Re-4,000,000 flow. It
can be seen that the flow separates near the
leading-edge but reattaches again further
downstream thus forming a recirculatoryflow

region. Another recirculatory flow region
then forms near the trailing-edge. A further

increase in angle of attack produces a rapid
growth and a merging of the two

recirculatoryflow regions and the formation
of the dynamic _tall vortex. A more detailed
study of the effect of pitch rate and of

Mach number on the onset of flow reversal
near the leadlng edge of the NACA 0012
airfoil and of two modified NACA 0012

airfoils [I0] sh0w@d that the onset of flow
reversal follows the same trends as observed

in the experiments. An increase in Mach
number shifts the flow reversal to lower

angles of attack, whereas an increase in

pitch rate delays the flow reversal to
higher angles of attack. More specifically,
as shown in Figure 14, the onset of flow

reversal appears to occur in response to
substantially the same critical pressure

gradient distribution. The delay to higher
pitch rate therefore appears to be due

primarily to the lag in inviscid pressure
build-up.

3.3 Computation of the Reattachment

Mechanism during Light Stall

Further details of the flow behavior

were also computed for small amplitude
slnusoidal pitch oscillations near static
stall [11]. Figures 15 and 16 show a flow

field comparison as the airfoil oscillates
through 14.7 degrees during the up and
downstroke for a pitch oscillation about the

quarter chord point in a free-stream flow of
M-0.3 at a Reynolds number of 2 million. The
airfoil oscillates with an amplitude of 2.5

degrees about • mean angle of 13 degrees.

This corresponds to the case of light stall
because the static stall angle of

approximately 13.5 degrees is slightly
exceeded during part of the oscillation. As
shown experimentally by Carta and Lorber
[12], the light stall regime is prone to

lead to stall flutter . Hence, there is
considerable interest to develop

computational procedures to predict this
phenomenon. It is seen from Figures 15 and

16 that there is a substantial thickening of
the boundary layer during the downstroke and
that the computed flow field (in terms of

instantaneous particle traces) is quite
different during the up and downstroke at
14.7 degrees. As soon as the static stall

angle is exceeded a reversed flow region
forms near the traillng-edge during the
upstroke. It continues to grow to its

maximum value at an angle of attack of 15.3
degrees during the downstroke and then

diminishes again until the flow is fully
reattached at around 12 degrees. The flow
field differences during the up and

downstroke produce the well known lift and

moment hysteresis effects. In Figure 17 the
computed mom£nt hysteresis loops are

compared with the measured moment loops
[11]. In this case the oscillation amplitude
was 5".5 degrees about a mean angle of i0

degrees at a Mach number of 0.3, a Reynolds
number of 4 million, and a reduced frequency
of 0.I. The experimental curves resemble a
figure eight. Instability occurs as soon as

the area enclosed by the clockwise part of
the loop exceeds the counterclockwise area.

The computed loops are purely
counterclockwise loops and hence fail to
predict the onset of stall flutter. This
failure can be traced to the Navier-Stokes

code's inability to predict the measured

collapse of the suction peak shown in Figure
18. The computed pressure distributions only
indicate the formation of a recirculatory

flow region near the trailing-edge.
Additional calculations using the Johnson-
King and the RNG turbulence model rather
than the Baldwin-Lomax model produced

significantly different recirculatory flow
regions and hence hysteresis loops, but none
were able to predict the experimental

distributions [11].

4. DISCUSSION

For the analysis of the above

experimental and computational results it
appears to be useful to consider the
characteristic response times which are
likely to affect the flow phenomena.
Introducing the aerodynamic time as the

proper reference unit, i.e., the time it
takes a free-stream particle to travel one
chord length, the aerodynamic times used in

the above described experiments varied from
0.00115 sec at M-0.2 to 0.0005 sec at M=0.45

(for the NACA 0012 airfoil of 7.62 cm

chord). The ramp rise times to the maximum
lift (at about 17 degrees incidence) used in
these experiments varied from about 0.0125
sec at M-0.2 to 0.005 sec at M-0.45,

corresponding to about 10 aerodynamic time



units. Wagner's lift response to a step inviscid airfoil computations to airfoils
change in angle of attack indicates that it undergoing ramp-type and sinusoidal
takes about 50 aerodynamic times to reach oscillations. Results obtained for a

the steady-state lift value, since the ramp
rise time to maximum lift is significantly

shorter than the time to reach steady-state

lift significant inviscid unsteady

aerodynamic effects (delays) can be expected
to occur. On the other hand, the step

response of the boundary layer typically is
of the order of the aerodynamic time, as

discussed for example by Hancock and Mabey

[13]. Therefore it can be expected that the
observed and computed stall onset delays are
caused primarily by the lag inthe inviscid

pressure build-up. Since the boundary layer

responds almost instantaneously to the
imposed pressure the flow reversal and stall
onset will occur as soon as a certain

critical pressure level or pressure gradient
distribution has been reached (see sections

2.3 and 3.2).

Although the Navier-Stokes computations

appear to be capable of predicting the stall
onset delay due to increasing pitch rate
several serious deficiencies are apparent.

One concerns the need for a greatly improved

resolution and computation of the boundary

layer region. A second deficiency concerns
the inability to include the boundary layer
transition phenomenon. Although
recirculation regions can be obtained with

a fully turbulent Navier-Stokes code (as
shown in Figure 11) the realism of such

computations is questionable. The importance
of proper transition modelling has been
shown in viscous-inviscid interaction

calculations [14,15], especially for airfoil

flows at Reynolds numbers less than one
million. Therefore transition modelling will

have to be incorporated into the present
Navier-Stokes code if the separation bubbles
described in section 2.2 for Reynolds

numbers ranging from 200,000 to 900,000 are
to be modelled successfully. A further

uncertainty concerns the effect of flow
unsteadiness on the transition process.

Since no expe::imental data are available
such modelling will have to based on steady-
state information only. Finally, the

inability of the commonly used turbulence

models (Baldwin-Lomax, Johnson-King, RNG) to
predict the reattachment process (see
section 3.3) is a further obstacle to the
success full computation of dynamic stall

phenomena.

It is likely that certain aspects of

the dynamic stall phenomenon, such as the
dynamic stall Onset, can be modelled more
efficiently and successfully with viscous-
inviscid interaction approaches rather than
with numerica] solutions of the Navier-

Stokes equations. Viscous-inviscid
interaction procedures permit the efficient

computation of detailed boundary layer
information and the incorporation of
transition modelling by either using

empirical transition onset models or
stability calculations and empirical
transition length models. Cebeci et al

[16,17] recently extended steady viscous-

Sikorsky airfoil appear sufficiently
encouraging to further develop this method

and to apply it to the NACA 0012
measurements d6scribed in section 2.

SUMMARY and OUTLOOK

Experimental and computational
investigations of the dynamic airfoil stall

phenomena occurring on NACA 0012 airfoils

subjected to harmonic time oscillations or
to ramp-type changes in angle of attack have
been described. Using optical interference-
free flow visualization and flow-measuring

techniques, such as stroboscopic schlieren,

point-diffraction interferometry, and laser-
doppler velocimatry, flow information could
be acquired which revealed hitherto unknown
features about the flow reversal/separation
onset processes, the influence of

compressibility, and the mechanism of flow
reattachment. The application of state-of-
the-art Navier-.Stokes computations showed

their ability to correctly predict certain

global trends, such as the dependence of
lift and pitching moment on pitch rate, Mach
number, and leading-edge geometry during the

upstroke, but that they are deficient to
model the detailed dynamic stall onset and

the dynamic flow reattachment features.

It is felt that the experimental

techniques are sufficiently well in hand to
proceed from the study of the basic dynamic
stall flow physics to the investigation of

promising dynamic stall delay and control
concepts because the successful

implementation of such concepts will
critically depend on the detailed
visualization and measurement of the flow

sensitivity to small changes in airfoil

geometry, especially near the leading-edge.
Efforts along these lines are planned for
the near future.
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Fig. 2 Schlieren Picture of Multiple Shocks

on Rapidly Pitching NACA 0012 Airfoil

Fig. 3 Multiple Vortices on Rapidly

Pitching NACA 0012 Airfoil

Fig. 4a Point Diffraction Interferogram of

oscillating NACA 0012 Airfoil

AOA=IO degrees, M-0.33, k_0.075

Fig. 4b Point Diffraction Interferogram of

Oscillating NACA 0012 Airfoil
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SIRULTANEOUS HAPPING OF THE UNSTEADY FLOg FIELDS BY
PARTICLE DISPLACERENT VELOCIRETRY (PDV)

by

Thomas T. Huang, David J. Fry, Han-Lteh L1u
David Taylor Research Center

Bethesda, RD

and

Joseph Katz and Thomas C. Fu
The Johns Hopkins University

Abstract

The current _xperlmental and computatlonal

techniques must be improved In order to advance
the predlctlon capablllty of the 1ongltudlna] vor-

tlcal flows shed by underwater vehlcles. The gen-

eratlon, development0 and breakdown (burstlng)
mechanisms of the shed vortlces at hlgh Reynolds

numbers have not been fully understood. The ab11-
Ity to measure hull separated vortlces associated
wlth vehlcle maneuvering does not exlst at present.

The exlstlng polnt-by-polnt measurement techniques

can only capture approxlmately the large "mean"
eddles but fall to meet the dynamlcs of small vor-

tlces durlng the Inltlal stage of generatlon. A
new technlque, whlch offers a prevlously unava11-

able capablllty to measure the unsteady cross-flow
distribution tn the plane of the laser 11ght sheet,
ls called Particle Displacement Veloctmetry (PDV).

PDV consists of Illuminating a thin sectton
of the flowfteld with a pulsed laser. The water
ts seeded with microscopic, neutrally buoyant par-
tlc]es containing imbedded fluorescing dye which
responds with intense spontaneous fluorescence
wlthln the l]lumtnated section. The seeded par-
tlcles In the vortlcal flow structure shed by the
underwater vehicle are Illuminated by the pulse
laser and the correspondlng particle traces are
recorded In a slngle photographic frame, each par-
tlcle leaves multiple traces on the same film. Two
dlsttnct approaches have been uttllzed for deter-
mlnlng the velocity distribution from the particle
traces. The ftrst method ts based on matching the
traces of the same partlcle and measuring the dis-
tance between them. The direction the flow can be
Identified by keeping one of the pulses longer than
the other. The second method is based on selecting
a small window wlthtn the tmage and ftndlng the
mean shift of al1 the particles wlthtn that region.
The computation of the auto-correlation of the
Intensity distribution wtthtn the selected sample
window ts used to determine the mean displacement
of particles. The direction of the flow ts Identi-
fied by varying the Intensity of the laser ltght
between pulses. Conslderab]e computation resource
ls required to compute the auto-correction of the
Intensity dtstrlbutlon. Parallel processing will
be employed to speed up the data reduction. A few
examples of measured unsteady vorttcal flow struc-
tures shed by the underwater vehtcles will be
presented.
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CALCULATION OF FULLY THREE-DIMENSIONAL SEPARATED FLOWS

WITH AN UNSTEADY VISCOUS-INVISCID INTERACTION METHOD

By

J. C. Le Balleur, P. Girodroux-Lavigne

Abstract

The three previous papers given at
the conference have shown that the viscous

inviscid numerical methods were capable to

calculate separated turbulent flows. The
"Semi-inverse method" and models of the

first author was giving access to computa-

tion of massive separations, stalled

flows, and shock waves - boundary layer

interactions, in two-dimensional or quasi-

three-dimensional conditions, from low

speeds to supersonic speeds. The "Semi-

implicit" method of the authors for time-

consistent coupling was given access to

the time-accurate transonic separated flow

and buffer computations, in two-dimen-
sions.

The present paper shows that the

viscous-inviscid interaction approach is

also capable to compute the fully three-

dimensional flow separation phenomena.

The method is based again on a thin-layer

approximation of the theory of "Defect-

Formulation" that provides the viscous-

inviscid splitting of the Navier-stokes

equations. A parametric analytical model-

ling of the 3D-turbulent velocity profiles

(including separation) is involved.

Numerically, the 3D-velocity profiles

are discretized in normal z-direction, and

driven by parametric integral 3D-equa-

tions, in direct or inverse modes, march-

ing in x-direction. The viscous-inviscid

coupling is fully 3D, and solved time-

consistently with an extension of the

"Semi-implicit" method previously suggest-
ed in two-dimenslons. A 3D invlscid

subroutine with TSP approximation is used
Results are obtained on one hand for

transonic steady flows over wings, with

shock-induced transonic separation. On

the other hand , the method provides

results for highly three-dimensional flow

separations, such as induced by a three-

dimensional through at the wall of a flat

plate. The 3D viscous-inviscid coupling,

and the 3D model of the velocity field,

provide three-dimensional instantaneous

skin-friction lines whose patterns exhibit

the same complex topology as Navier-Stokes

solvers, with loci, nodes and saddle-

points.
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PREDICTION OF AIRFOIL STALL USING NAVIER-STOKES
EQUATIONS IN STREAMLINE COORDINATES

D.H. Choi, C.H. Sohn*, and C.S. Oh

Korea Advanced Institute of Science & Technology
Seoul , Korea

Abstract

A Navier-Stokes procedure io Calculate the flow about
an airfoil at incidencehas been developed: The parabolized
equations are solved in the streamline coordinates generated
for an arbitrary airfoil shape using conformal mapping; A

modified k-e turbulence model is applied in the entire
domain, but the eddy viscosity in the laminar region is
suppressed artificially to simulate the region eorrectiy. The
procedure has been applied to airfoils at various angles of
attack and the results are quite satisfactory for both laminar
and turbulent flows. It is shown that the present choice of
the coordinate system reduces the error due to numerical
diffusion and that the lift is accurately predicted for a wide
range of incidence.

used a SIMPLE-type method with a k-e model to predict
the pressure distribution and the near wake. Both adopted
nonorthogonal computational grids due to their simplicity
and generality. Although these calculations exhibit certain
degree of success, the results are not entirely satisfactory:

the flow at near- or post-stall.angleal has not beensuccessfully predicted. Chang et observed the similar
shortfalls in an existing Navier-Stokes procedure in their
comparative study of interactive boundary-layer and thin-
layer Navier-Stokes procedures.

The intention of this paper is to present a new Navier-
Stokes procedure, in which the various aspects of the
calculation have been improved, and to show that the flow
over a wide range of incidence has been predicted with
reasonable accuracy and robustness.

Introd uction

Aerodynamic characteristics of an airfoil at incidence,
especially near and beyond the stall angle, is of paramount
practical interest as these are closely related to the
performance of engineering devices such as aircraft and
turbomachinery. Because of the importance associated with
the flow, much efforts have been devoted to develop
prediction techniques for these flows.

One may approach the problem by using the interactive
methods that explicitly couple the viscous and inviscid
effects in an iterative manner. The methods b], Maskew &
Dvorak, t Gilmer & Bristow, 2 and Cebeci et al. may belong
to this category. By and large, the methods have been
successful in predicting C1,_., and the subsequent stall.
However, since these all adopt the boundary-layer
procedure, special treatments are necessary to handle the
reversed flow region; the details of the flow or the accuracy
in this region may suffer.

On the other hand, the method based on the Navier-
Stokes equations, which is gaining popularity with the
advent of modern computer technology, is more rigorous
and appropriate, in principle, than the former for the highly
interacting flows as the equations are valid both in potential-
and viscous-flow regions. Handling of the separated region
is more straightforward, too. Among many earlier attempts,
Shamroth & Gibeling 4made compressible-flow calculations

using a transitional k_ turbulence model and Rhie & Chow s

* Presently senior Researcher, Agency for Defense
Development, Daejeon

Grid Generation

Among various grid generation techniques, a method
based on conformal mapping has been adopted as it has
distinct advantages in treating the flow of present interest.
Specifically, the grid lines so generated are orthogonal to
each other and, moreover, the coordinates can readily be
made to be intrinsic. These two points are not imperative.
However, the equations do become simpler when the
coordinates are orthogonal and the false diffusion in the
numerical scheme is greatly reduced if the coordinate line is
aligned with the local streamline. The results are, therefore,
expected to be more accurate.

The conformal mapping used here transforms an
arbitrary airfoil shape onto a unit circle by two successive
transformations. The profile in the physical plane z is first
transformed into a smooth near circular section in the plane

by the Karman-Trefftz transformation, which removes the
sharp corner at the trailing .edge, and, subsequendy, into a
unit circle by solving the Gershgorin integral equation. The
latter part is done numerically after the integrand is suitably
modified to make the procedure more tractable and accurate.
The details are referred to Choi & Landweber 7 and will not
be repeated here.

The resulting mapping relations may be written as

z =_0 O)

and the Laurent series,

_=AT+a_.l a2 a3+7 +7 ÷... (2)



wheref denotes the Karman-Trefftz transformation and A &
a's are coefficients that are determined from the second
transformation. It is important to point out that, since the

profile in the intermediate plane _" is nearly circular, the
number of terms required in the series, Eq. (2), to accurately

_, compute _ is not large: 10 terms have been found sufficient
= " _and used in the present work.

From these relations, various types of grid, i.e., C-,
H- and O-grid, can now be constructed. The radial lines

and the concentric circles in the "r plane give an O-type grid
while the horizontal and vertical lines in the plane of
complex potential(W) and those in the W 1_2plane give,
respectively, H- and C-type grids. The grid of H-type is
used in the present calculation and the details of how it is
obtained is described below.

The complex potential W for a stream velocity U at an

angle of attack a about a unit circle at the origin is

W = _e "ia + + i Ins (3)

where F is the circulation about the circle and is equal to

4trUsin(a-O °) so that Eq. (3) satisfies the Kutta condition

that the velocity be zero at the trailing edge, 0=8,. The

velocity U in the 'r plane is related to the undisturbed

velocity U_ in the z plane by

(aQ (4)
U = u,, k dr ].._,d_'J.

z-plane

,I,

B

B"

C

_DC'

W plane

Fig. 1 Physical and computational domains for the flow
about an airfoil at incidence.

The coordinate lines in the W plane are lines of constant

potential (¢_)and stream function (1//); corresponding lines in
the physical plane are also equipotential lines and
streamlines of the flow under consideration, and constitute
an orthogonal grid of H-type. One point to observe is that,

because of nonzero circulation, F, the potential at the trailing
edge is double valued,

_u = e_rL+ F (5)

and a jump in _ is present across the trailing streamline.

(a)

(b)

Fig. 2 Sample grid and the close-up view of the nose region
about an airfoil at or=5 deg.

The remaining task to complete the grid construction is
to distribute the grids efficiently. This is accomplished by
using tanh as a distribution function to place more grids
where needed, e.g., near the surface, around the leading and
trailing edges. For the proper clustering in the streamwise
direction, the grids are first distributed along the stagnation
streamline ABCD and AB'C'D shown in Fig. 1 using the
arc length as parameter. The number of grids for the
segment BC may be different from that for B'C'. The
transformed grids in the W plane can then be obtained by
using the relations (1), (2), and (3). However, a direct
attempt to do so involves rather time-consuming algebra;
the following spline interpolation is used instead. For a

given set of points along the 0 axis, the corresponding

==



points, which lie on the stagnation streamline, in the z plane

are readily determined: z from Eq. (3) by Newton's

roottinding algorithm, _" by Eq. (2) and z by Eq. (I). The

arc length, s, for each of these points is then calculated and

the relation between s and @ is established. A cubic spline

function is used to relate the two and, for a point in the z
plane, this interpolation function gives the matching point on

the @ axis in the W plane. The grid clustering in the vertical

direction, on the other hand, is done in the W plane using V

as parameter. A typical grid in the physical plane for a = 5 °

is shown in Fig. 2.

Governing Equations

Following Nash & Patel, s the continuiby and Reynolds-
averaged Navier-Stokes equations in general orthogonal

curvilinear coordinates (_,r/) are written as:

Continuity:

_12 "=--

Or21 ----

1 03Kt2 1 03K2t

h I 03_ h2

1 03K2j 1 03K12

h2 _ h_ T(

1 03hl

Kn --h-'Tff"_ ' _tc.

where ( U, V ) and ( u, v ) are the mean and fluctuating velocity

components, respectively, in the (:..,,7"/)direction, p the
u,c

pressure, Re (="7") the Reynolds number, v the

kinematic viscosity, and h and K the metric coefficients and
curvature parameters. The equations have been made
dimensionless by using the freesrream velocity U, and the

airfoil chord c. These equations are of conservative form
and are exact except for the neglected streamwise diffusion
terms. The conservative form appears to give more stable
behavior of the numerical method in the neighborhood of
the stagnation point where the H-grid becomes singular.

(6)
The Reynolds stresses in Eqs. (7) and (8) are related to

the mean rates of strain through the eddy-viscosity
hypothesis and are given in the next section.

momentum:

h__ O_ff_(h2U2) + 1 03 h UVI 2 ,'_ h-_=gi_( ; )+(KnU

J o), 103u2 10,_
- x_,v_v +_ +_zT +_"_i"

+ 2K_2_ +xu(d - "_:)- _( v2"u

- 2K21_2" _ + 2KI2 + _11U + OII2V) = 0

7/ momentum:

1 __._(h2UV)+h_2._(hlV2)+(K21Vhlh2

-x,_u)u+_-_ +_-_T +_'_;

+ 2K2,u'G-K,2(ur-v2)-_e(V'V

IOU IOU
- 2K,_-y +2K._-=+ _.v+_v) =o

"2"'1

and

I 04 (-K.m_+ +K ) I 8
v_'=h_a_ _'_'_.

)103
+(xj2- xn _

(7)

(8)

Turbulence Model

A modified k-e model is adopted as a closure

relationship in the present study. The transport equations
for the turbulent kinetic energy and the rate of dissipation
compatible with Eqs. (6)-(8) are

h72_7_(h2Uk)+h72_t_(hlVk)

, + , (9)
hlh2 O'kReff h I O'kRe/f h 2

-P, +e =0

hlh2 03_ (h2U'e) + (hIVE)1 2 v*l

1 h2 J I h_

(lO)

where

loVe loVJPk=Pk,x+Pk,n =-_'v _l"_ + _2-_-K12 u

-zTz l o_U
-K,,V)- (u -v )(_-_ +KnV)

C_

P, = Pkj + "_Pk,n

1 k2
e.::=_+_,,v,=c.T

(II)

(12)



and the model constants C_,. <rk. <re . Cel , C_e and Cr._ are
given the values of 0.09, 1.0, 1.3, 1.44, 1.92 and 4.44,

respectively.

The dissipation equation was first proposed by Hanjafic
& Launder, 9 where they reasoned that the energy transfer
rates across the spectrum are preferentially promoted by
irrotationai deformations and showed the improved

prediction over the standard k-E model, especially in the
adverse pressure-gradient region. It should be noted that

the dissipation equation assumes the _ direction to be the
predominant flow direction and the present intrinsic
coordinate system is consistent with this assumption.

Two key modifications to this model have been made
for the present study. Rather than using the wall function in
the near-wall region, the two-layer approach of Chert &
Patel _° is adopted to make the model applicable in the
separated-flow region and to provide a finer resolution in the
near-wake region. The other change made is the use of the

anisotropic k-e model of Nisizima & Yoshizawa u to

represent the Reynolds normal stresses. The Reynolds
stresses are then expressed as

(1 o_V+ 1 aU )= ,,, - K 2v- K2 v (13)
2 lo3U- ;'---: +,., c,+)
2 1<9V

whei:e

kS(1 o_U 2
Sd=I(-2CzI+Ca) 7_2-'_-K2IV) (16)

1 kS(l olU 2
s:=7( ca-2c,2)7[ - -K2,v ) (17)

and Crl = 0.07, Cr2 =-0.015 from Ref. 11. The
nonlinear terms in Eqs. (14) and (15) lead to the anisotropy
of the turbulence intensities.

When using the k-e model, it is customary to assume,

for computational convenience, that the fl_ow is turbulent
everywhere as was done in Rhie & Chow. Although this
may be justifiable as the laminar portion of the flow is
limited to the small region near the nose, the artificially
produced turbulent flow, which may be healthier than the
real flow, could gready affect the leading-edge-separation
pattern.

In order to get around this difficulty inherent to the k-e
model, the concept of intermitteney is employed: the

transport equations for k and e are solved in the entire
domain, but the eddy viscosity is set to be zero in the
laminar region. The procedure has been found more
successful than solving the equations only in the turbulent
region. The latter performed relatively poorly as the initial

profiles for k and e at the transition location could not be
provided accurately.

Solution Procedure

The governing equations, Eqs. (6)-(10), are solved in

the calculation domain bounded by constant _ and 77 lines.
Using the staggered grid, shown in Fig. 3, the diffusive
derivatives of the equations are discretized by central
differencing while the convective derivatives in the
streamwise and cross-streamwise directions by upwind and
hybrid differencings, respectively. The numerical scheme
adopted in the study is the modified version of the CELS
(Coupled Equation Line Solver) algorithm used in Ref. 12:

O'P,k

V

Fig. 3 Grid layout and storage location for each variable.

T£7 _- L7£

The calculation proceeds in the streamwise direction
and the solution at a given streamwise station is obtained
simultaneously. The penta-diagonal system of equati0ns for
V, which is derived from the continuity and momentum
equations by eliminating the pressure and the streamwise
velocity component, is solved first. The pressure and U then
follow successively by the backward substitution. Using
these values, the turbulence transport equations are solved

for k and _ by the Thomas tridiagonal matrix algorithm. To
enhance the convergence, a backward pressure correction is
applied at the end of each complete sweep. This is

accomplished by forcing the _-momentum equation be

satisfied, on the average, along each constant _ line. The

process is repeated until the specified convergence criterion
is met. Maximum pressure variation of 10 4 is used for the
present calculation.

The calculation is performed for a sufficiently large
domain that encompasses the entire profile and the following
conditions are specified at the boundary:

upstream: U = Upo, ,

downstream: _ -- 0

outer:. U = Upot,

wall: no-slipcondition



where the subscript pot indicates the potential-flow value.
The turbulence quantities at far boundaries except along the
downstream end, where the conditions on turbulence are not
needed, are assinged a very small value to simulate the non-
turbulent flow.

Results and Disscussion

Laminar flow

The calculation is first performed for the laminar flow
about a 12%-thick symmetric Joukouski airfoil section at r,.)

Re=lO00. For the incidence angle of 5", the grid of
(140x40) and the calculation domain which covers the
region -1 < x/c < 5, -3 < y/c < 3 were found adequate. A
coarser grid (70x40) appears to give comparable results and
an optimum grid may lie somewhere in between. However,
no further attempt has been made to find this grid
distribution.

The velocity vectors and the surface pressure
distribution are presented in Figs. 4 and 5. The flow
separates at about midsection and, consequently, the
pressure distribution is altered substantially from that of the
inviscid flow. The results are seen to be in excellent
agreement with those by Ghia et al. t3, who solved the
streamfunction-vorticity equations on a (229x45) C-type

grid. Fig. 5

Figure 6 illustrates the importance of the grid alignment

with the flow. Here, the calculations have been made for a

= 8* with two different grids: one grid is generated for tx =

0° and the other for tx = 8° and, as a result, the former is

skewed by 8 ° in relation to the flow direction. It is observed
from the figure that a finer grid is required when the grid is
skewed to obtain the results of comparable accuracy. It is
primarily due to the numerical diffusion caused by the f'wst
order upwind differencing and the discrepancy could be
reduced by incorporating a higher order upwind scheme.
This will, however, introduce additional complexities into
the coding and it is desirable to construct a grid which
follows the general flow direction whenever possible.

Fig. 4 Velocity vectors for the 12%-thick Joukowski airfoil _

section at u=5 deg and Re =1000. Fig. 6

-2.0

-1.0-

0.o

0 Ghia [13]
Present result

--(140x40)

......... inviseid

x/o

Surface pressure distribution on the 12%-thick
Joukowski airfoil section for a=5 deg andRe=1000.

-0.5-

0

0.5-

1.0

grid angle=8"
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grid angle=O"

(7o x4o)

_- 1--

x/c

Comparison of two different grids for a=8 deg.



Turbulent flow

For turbulent flows, the calculations have been

performed for NACA airfoil sections, namely 4412 and
0012, at various angles of attack. A 140x40 grid is fitted
over -1.5 < x/c < 10, with the first point normal to the

surface being placed approximately at y+_5. It is
reminded that the grid needs to be reconstructed when the

angle of attack or the Reynolds number varies. The vertical
boundary is located at about where the tunnel wall is to
closely mimic the experimental condition and the slip
condition is imposed there. Since the wall and the constant

r/ line do not coincide, we introduced a vertical velocity

component of right amount during the computation to make
the velocity vector parallel to the tunnel wall. The wall
location is indicated by the dotted line on the present grid for

the NACA 4412 airfoil at ot = 13.9" in Fig. 7.

lill%ll llllii iiiiiiiJ l lllllllll l l t yll I I I i I-
I l! ¸,

Fig. 7 Computational grid with tunnel wall location for the
NACA 4412 airfoil at _=13.9 deg.

The pressure distribution for the NACA4412 airfoil at

tz ffi 13.9 ° and Re = 1.5x10 6 is presented in Fig. 8: In the

calculation, the transition points for uppe r and lower
surfaces are prescribed to be at 0.025c and 0.103c,
respectively, as done in the experiment. The present result
(solid line) is in neal'aexact agreement with the experiment of
Coles & Wadcock. As in the laminar case. the pressure
distribution is altered greatly from the inviscid one by the
flow separation. Also shown in the figure are the results by

the standard k- e model with and without the tunnel wall

effects. Here, the result without the tunnel wall means that

the calculation is performed in a larger domain (-5 < y/c < 5)
with the freestream boundary condition. Although these all
are in relatively good agreement, it is evident that each of the
changes results in noticible discrepancies.

Figures 9 and 10 show the velocity vectors and the wall
shear-stress distribution. The velocity vectors and the grid
lines, which are the streamlines of the inviscid flow,
coincide in most of the region. This is expected and
validates the present choice of turbulence model and the
approach of parabolization. The wall-shear stress shows
that the boundary layer separates at x/c =0.8 and the
laminar boundary layer is very close to separation before it
becomes turbulent at x/c = 0.025. It is cautioned here,
however, that the absolute values of wail-shear stress in the
upstream section of the airfoil may not be accurate as the
boundary layer is too thin to be adequately resolved by the
present grid distribution. To check how well the turbulence
model mimics the transition process, the turbulence

quantities, k and v, , and the wall-shear stress in the
neighborhood of the transition point are examined in Fig.
I 1. The turbulent kinetic energy and the eddy viscosity
plotted are the maximum values at the given station. The
smooth but rather sharp increase in these quantities indicates
that the present treatment for transition is qualitatively
correct. The turbulent kinetic energy does not grow in the
laminar region because the prodution terms in the transport
equation are turned off by suppressing the eddy viscosity.

et.

,°1-8 o Coles & Wadeoek [14]

-e- i --. inviseld

-4' \..

o
1 _: ...... z..:.: ....... -..-.::_

x/c

Fig. 8 Pressure distribution on the NACA 4412 afffoil
section for a=13.9 deg and Re =1.5x10_: o,
experiment[14]; _ , present; -- -- --,standard
k-e model ; -----, standard k-e model with
freestream condition; .... , inviscid flow.

Fig. 9 Velocity vector for the NACA 4412 airfoil section
for a=13.9 deg andre =1.5x 106.
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Fig.10 Wall-shear stressdistribution on theNACA 4412
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a) Turbulent kinetic energy and eddy viscosity

The lift distribution for various angles of attack is given

in Fig. 12: the computed result agrees well with the
experiment including c_,,_. The lift coefficient obtained
without taking the wall effects into consideration follows the

data closely when cc is small but begins to deviate as a
becomes large: .this behavior is consistent with the actual
tunnel blockage effect, which increases with the angle of
attack.
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b) Skin-friction coefficient

Fig.l 1 Turbulence quantifies in the neighborhood of
transition location.

Fig.12 Ct - ct cur%efor the NACA 4412 airfoil section at
Re=l.5xlOV: O, experiment[14] ; --, present ;

.... , standard k-e model; --- --, standard k-e
model with freestream condition.

The results for the NACA 0012 airfoil are shown in
Figs.(13)-(15). The calculations have been performed for

ct = 6 ° at Re = 1.5x106 and 2.8x106. Figures (13) and (14)
compare the pressure distributions for these cases with
experiments[15]; a good agreement is obs4crved. The
comp_ational results by Shamroth & Gibeling and Rhie &
Chow are also plotted in Fig. 14. It is clear that these are
much less successful especially in capturing the pressure
peak near the leading edge. It _eeds to be noted that the
results of Shamroth & Gibeling was obtained at a lower
Reynolds number (l.0xl06) and some of the discrepancy
might have been caused by this.
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TheC_- ct curve forRe = 1.5x106 is depicted in Fig.

15, along with the curves obtained by the standard k-e
model with and without the wall effect. The results are in

good agreement with the data and show the similar
characteristics as in the case for the NACA 4412 airfoil.

For the incidence angle greater than that shown in the figure,
the anisotropic turbulence model becomes less stable due to
its nonlinear terms; the convergence is slowed as more
under-relaxation is required. The calculation was thus not
carried out for the case much beyond the stall angle.
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Fig.15 C t- a c.u_e for the NACA 0012 airfoil section at
Re=l.5xl0 : A, experiment[15] ; , present ;
- -- --, standard k-e model ; .... , standard k -e
model with freestream condition.

Concluding Remarks

A new and improved Navier-Stokes procedure has been
developed and applied successfully to the flow about the
airfoil at incidence: the lift of the airfoil is accurately
predicted for a wide range of angles of attack. It has been
shown that the present choice of the coordinates, i.e., the
streamlines and the equi-potential lines of the inviscid flow,
helps make the method more accurate and efficient. The

modified k-e turbulence model, which is used in the whole

domain with zero intermittency in the laminar region, gives a
qualitatively correct transition behavior.
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Abstract

Studies are made of the turbulent separation bubble in

a two-dimensional semi-infinite blunt plate aligned to a

uniform free stream when the oncoming free stream

contains a pulsating component. The discrete-vortex

method is applied to simulate this flow situations because

this approach is effective to represent the unsteady

motions of turbulent shear layer and the effect of viscosity

near the solid surface. The numerical simulation has fairly

reasonable predictions with the experimental results which

have already performed. A particular frequency given a

minimum reattachment which is related to the drag

reduction and the most effective frequency is dependent

on the most amplified shedding frequency. The turbulent

flow structure is scrutinized, which includes the time-mean

and fluctuations of the velocity and the surface pressure,

together with correlations between the fluctuating

components. A comparison between the pulsating flow

and the non-pulsating flow at the particular frequency of

the minimum reattachment length of the separation bubble
suggests that the large-scale vortical structure is associated

with the shedding frequency and the flow instabilities.

Introduction

An improved understanding of pulsating flow

characteristics on the turbulent separation bubble is useful

in the design of aerodynamic high-speed vehicles and of

pulsating turbomachineries. In this study, the separation

bubble is generated by flow separation from a sharp

leading-edge of a blunt circular cylinder whose axis is

aligned parellel to the approaching main flow. Relevant

experimental studies have been carried OUt by Kiya et al)

with a view toward the control of a turbulent leading-edge

separation bubble.
Control of the separation bubbles by sinusoidal

perturbations has been reported by many researchers 2"3.

Roos and Kegelman 2 obtained the re,attachment length in a

backward-facing step flow as a function of the level and

frequency of the perturbation. Sigurdson and Roshko 3

analyzed the structure and control of a turbulent

reattaching flow; the reduction of the pressure drag,

bubble height and reattachment length were found to

depend critically on the forcing frequency.

In order to numerically simulate pulsating flow on a

turbulent leading-edge separation bubble, the discrete-

vortex model is applied. This approach has been

demonstrated to be effective in representing the unsteady

motions of turbulent separation bubble 4. The finite-

difference simulation of the averaged Navier-Stokes

equation with turbulence models has the advantage in

computational accuracy and applicability. However, it is

currently limited to the ranges of low Reynolds numbers

for separated unsteady flows.
The discrete-vortex model is known to be a powerful

tool for simulating unsteady separated flows of high

Reynolds numbers 4"5.The separating flow at the leading

edge is represented by a combination of an inviscid

potential flow and discrete vorticies. The effect of

viscosity near the solid surface is incorporated in the

model. The reduction in the circulation of elemental

vortices is also introduced as a function of their ages in

order to represent the three-dimensional deformation of

vortex filaments. Details regarding the numerical

procedures can be found in Ref. 5. The ability of the

discrete vortices to adequately represent pulsating
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continuousvortexsheetesintheseparatingbubbleshas

beentestedinRe£ 6-7.

Inthispaper,we considerthespecificexampleofthe

flowpastatwo-dimensionalfiatplatewithfinitethickness

and a bluntleading-edge,which isalignedparalleltoa

uniformapproachingstream.The pulsationwas provided

by a sinusoidallyoscillatingjetissuedfrom a thinslit

alongthe separationedge.Therefore,inthe numerical

simulation,theoncoming freesueam was assumed to

containa sinusoidally-varyingpulsatingcomponent.The

entireflow fieldin the separationbubbleis affected

mainly by the dynamics near the leading-edge where

separation occurs (Fig. 1).

The purposeofthisstudyisto examine the detailsof

the turbulent leading-edge separation bubble by discrete-

vortex model. The two key parameters characterizing the

free stream are the amplitude of pulsation A, and the

frequency parameter St (=fHRJ._. The effects of the

separation bubble on the forebody drag, the reattachment

length and the lock-on effect between the pulsating

frequency and the shedding frequency are investigated.

]'he turbulent flow structure is also scritinized, which

includes the time-mean and fluctuations of the velocity

and the surface pressure, together with the correlations

between the fluctuating components. The effect of

pulsation on the minimum reattachment length of the

separation bubble iS examined in detail. This will show

that the large scale vortical structure is closely linked with

the issues of the shedding frequency and the flow

instabilities.

Discrete-vortex model

The leading-edge separation bubble of a blunt two-

dimensional body is considered. This flow geometry is

basically the same as the flow configuration of Kiya 5.

Specifics regarding the utilization of discrete-vortex

method can be found in their studies. The separation

bubble is generated by flow separation from a sharp

leading-edge of a blunt two-dimensional body. The

dimension of the flat plate is of f'mite thickness(H) and

se_-ini_nite length._-3_he:in_tFractions =bet_e_ _e twO

separation bubbles at the corners _are _sumed to be
_ =

minimal. Thus, the symmetry condition is applied in this

problem. The geometry of the lx_dy_ given_ Fig.2:

The Schwartz-Christoffel transf_ormafion is used to

project the exterior region of the body ( the physical

plane, z-plane) into an upper half plane ( the transformed

_.-plane). The transformation is given by

z= XH--'[(22- I)u2- cosh-'2]+ iH (1)

The upstream free stream velocity U_ contains a

pulsating component, therefore,

U:=U_(I+As_) (2)

wherefisthepulsatingfrequencyand A istheamplitude

ofpulsation.Iftheflowhas no pulsation,i.e.,A=0, U:

revertsdirectlyto the constantvelocityat upstream

inf'mityUi.The complex potentialw, inducedby the

discretevorticesisgivenby

S'K 2-kj
= _,,, L Jl

w, . (3)

where N is the total number of vortices in the flow field,

and j is the position of the jth vortex in the transformed

plane with its complex conjugate' and K_ denotes its

circulation. The complex potential w for the entire flow

field is the sum of w_ and w, by superposition, i.e.,

w=w,+w_, where w_ is the complex potential for the
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h-rotational flow around the body.

The velocity field in the physical plane is given by

dw dw dA
u- Ivffi"_" = dA dz

where u and v are the velocity components in the x- and

y-directions, respectively. The velocity at a vortex point,

the kth vortex, has to be obtained by differentiating with

Taylor expansion and the complex invariant,

lit - iYt =

U_ N [Kj x iKj iZ_

]*t

wheredwJdz isdeducedfromtakingtheappropriatelimit

asz_z k.

The convectionofvorticeswas advancedby a second

order scheme with a small time interval, the nascent
vortices have to be calculated at a much smaller time

interval. Since the velocity at the leading-edge should be

finite, the complex potential should satisfy the Kutta

condition at the edge

(dw/d_.)x,t=0. (6)

The vortices are shed from the leading-edge into the

separation bubble as a result of the separation. The rate of

vorticity shedding was determined through the

relationship, which was inferred from the experimental
resultss

A_--_= l(dw_ 2_'C'_" J_(H._ (7)

where Kn is the initial strength and the position of the

nascent vortex is assumed to be i(H+0.5e), and At, is the
time interval between the introduction of the nascent

vortices. The position of the nascent vortex is assumed to

be i(H+e), where e is an approximate initial value. The

strength and location of the nascent vortices can be

adjusted by an appropriate iteration scheme satisfying the

Kutta condition 5.

The reduction of the circulation of every vortex is

modelled by s

= I- e..n_-4Uit/Hj .

where K(0 is the circulation at time t, a is an adjustable

constant, and Re denotes the Reynolds number Ui(H/v)
(4)

and v the kinematic viscosity of the fluid. The destruction

and coalescence of vortices are assumed to be proportional

to the viscous core radius of each vortex. Physically, the

removal of potential vortex may be regarded as

corresponding to the destruction of vorticity in the shear

layer by interaction with the boundary layers along the

surface. The decay law (8) was deduced from the exact

solution of Navier-Stokes equations for a single

rectilinear viscous vortex if r is replaced by the radial

(5) distance from the center of the vortex. After caning out a

number of preliminary calculation, the value of the

product a2Re = 60 was employed, and this was found to

achieve satisfactory agreement with experimental result 2.

It may be noted that an optimum value of aZRe depends

on the particular type of flow considered.

The pressure coefficient Cp can be calculated from

the Bernoulli equation,

P -Pt
Cp m I ,2

+pU+

2

2 _ l (dw'_

(9)

where pi is the pressure of the free stream, p the density

of fluid and _ the velocity potential.

In the course of computations, some vortices approach



very closely the wall of the blunt body. Consequently,

due to the presence of image vortices, these vortices

would have unreasonably large velocities. In order to

rectify this computational problem, vortices that

approched the wall nearer than the depth of 0.02H

were removed from the flow field. Since the transport of

momentum and vorticity were negligible in the far field

downstream, vortices and their images that were located

further than the region 25H were also removed from the

computation.

Since a large number of vortices exist with random

locations in the flow field, it is probable that some vortices

attain small separation and, therefore, produce velocity

jumps at each other's positions due to the absence of

viscosity. In order to alleviate this difficulty, the Concept

of the cut-off vortex, which was originally suggested by

Chorin 9, is also employed, i.e.,

Wo K1ogr (r>o)
-- 2_

K(r / o)
= --_--- (rSo)

(10)

where V° is the stream function of the vortex and o the

cut-off radius. The numerical value o = 0.05H was

adopted in this simulation . The concept of the cut-off

vortices was justified in that the vortex blob in discrete-

vortex simulation is basically different from that of

potential flow theory, say, the point vortex.

It is noted again that the viscosity of fluid is

instrumental in enforcing the no-slip flow condition.

Since the discrete-vortex simulation is started from the

inviscid flow, an appropriate procedure should be devised

to include the viscous effect for the turbulent separat/on

bubble and the shear layer. The viscosity of fluid gives

rise to the displacement thickness in the boundary layer

and, thereby, transfers momentum to the direction of

transverse velocity. For this purpose, an artificial

transverse velocity Vd(=0.0125U_ was added uniformly

to the edge of the shear layer.
It seems that the vortex distributions and wave forms

of flow field evolve to be statistically stationary at times

Uit/H > 80. In this sense, the mean values and

fluctuating components were calculated between the

interval of 80 < Uit/H < 280. The non-dimensional

time step t for the movement of the vortices was 0.16H /

Ui and the time interval At, between the introduction of

the nascent vortices was 0.32H / Ul ( -- 2At).
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Resultsand discussion

It is important to verify the aforementioned analogy

between the sinusoidal oscillating jet at the separation

edge and the pulsating freestream flows by the present

discrete-vortex method. Toward this end, the reattachment

length normalized in the form X/X,, is plotted in Fig.3

against the non-dimensional frequency, i.e., the Strouhal

number St for three different levels of the perturbation. It

is noteworthy that the comparision gives a fairly

consistent prediction, and this supports the assertion that

this analogy seems to be reasonable. The most interesting

feature of Fig.3 is that the reattachment length attains a

minimum at about St=l.4 for both cases, while the

amplitude affects only on the total size of reattachment.

This implies that the separation bubble is affected mainly

by the frequency of perturbation.

In the present study, the turbulent structures are

scrutinized with the comparisons for the non-pulsating

flow, natural flow(A=0) and for the perturbed flow at

A=0.3 and St=0.1. It should be noted that the condition of

flow pulsation was selected such that a maximum

reduction of re,attachment length for this two-dimensional

flow configuration can be realized not for the circular

blunt body (Fig. 4). For this two cases, the reverse-flow

intermittency is displayed in Fig. 5. The reattachment

position is defined as the point where the intermittency, I,

has the value of 0.5. In this figure, it is noticed that the

reattachment position(X/H=6.5) of perturbed flow is much

reduced in comparision to that of non-pulsating

flow(X/H---9. I). This agrees with the experimental result'.

Fig. 6 shows the distribution of surface velocity under

the same condition. In a perturbed flow, the position ol

zero surface velocity is located slightly upstream of the

reattachment position while the same position is
maintained in natural flow. This means that the reverse

flow intensity of perturbed flow is much stronger than that

md A4.3
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Fig. 6 Surface velocity distribution
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of natural flow, and the feed back of fluid toward

upstream of perturbed flow is active.

The distributions of pressure and its fluctuating

pressure along the plate surface are shown in Fig. 7. This
points to the relation with the flow re.attachment for both

perturbed and natural flows. It is known that the flow

re.attachment occurs at near the mean pressure recovery

region. It is found that the mean pressure coefficient ot

perturbed flow at separation fine is smaller than that ot

natural flow (Fig. 7(a)). This implies that the pressure drag

is reduced when the flow is perturbed. In the pressure

fluctuations of Fig.7(b), this feature of reattaehmem

position can be elucidated more clearly. The r.m.s, of

pressure fluctuation is relatively small near the separation

region and then it increases along with the downstream

and reaches maximum just in front of reattachment

position. This region is also the same position of the

maximum mean pressure recovery rate. In turbulent shear

layer, it is believed that the flow has its own natural



instabilityand unsteadiness and the flow disturbance can

be amplified most effectively at the appropriate pulsation.

This is called themost effective frequency, St=u. This
effect of amplification is maximized at the flow

reattachment region, so the motion of large-scale vortices

in this region are the most important elements that can

decidethecharacteristicsoftheentireflowfield.

In passing,itcan be found in Fig.7(a)thatthe

pressurecoefficient at separation point_Cp,) for the
pulsating flow is reduced considerably about 30% than
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that of non-pulsating flow. Reduction of Cp, reproduces i=

the reduction of pressure drag of the body. The maximum

reduction of C._ is also observed at St,_. This agrees well

with the experimental result of Sigurdson and Roshko 3.

Koenig t° studied the relation between Cp, and the drag

coefficient (C_ of fluid bodies, and it gives

C_=,0.8+0.2C_. (11)

i ,f- . __ i_ _ o ,_

From this relation, it can be noticed that the drag of the

body (Cp,)is decreased approximately 6.25% when

perturbed, i.e., C._=0.68 for non-pulsating flow while

Cdc-_.64 for pulsating flow.

The main mason of drag reduction can be explained _=

in two ways. F'Lrst, the pulsating perturbation invokes

vortex coalescence in the separation bubble and then it

causes the enhancement of flow spreading rate. Since the

downstream flow rate is increased due to these __

phenomena, it gives the drag reduction. It means that the

enhancement of vortex merging and flow spreading rate is

strongly dependent upon the pulsating frequency. This call

be analyzed as a preferred rhode in Ref. i0. Next{the

perturbation increases the entrainment from the outer

irrotational flow. This causes the reduction of curvature of

the time-mean streamlines near separation line and it

deduced the large pressure gradient. Thus it decreases C_ _,

and Ca. It is also found that the maximum of entrainment

rate is observed at Sz=,_.

Many experimental results reveal that the effect of

pulsation on flow structures is observed mostly at the

comparatively lower frequency region _'_'_=. At a

particular frequency, the vortex coalescence is

surprisingly enhanced. It causes that the reduction of

recirculating separation bubble and flow drag of the body.
The distributions of the time-mean velocities U and

V are displayed in Fig. 8. The difference between non-

pulsating flow and pulsating fl0w is seen to be negligible

near the separation line where vortices are just formed out.

However, the effect of perturbation is evident in the

V/U. -

Fig. 8 Distribution of U/Ut and V/U, along the
downstream distance
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Fig. 9 Distribution of r.m.s, u/U, and r.m.s, v/U, along

the downstream distance

reattachment region. The relatively large value of V at the

separation line is due to the abrupt decrease of the

curvatures of streamlines. Fig. 9 shows the r.m.s of

velocity fluctuations. The turbulence level of perturbed

flow is found to be considerably higher than that of natural
flow.
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The disa-ibutions of the Reynolds slress are shown in

Fig. I0. In perturbed flow, it is noteworthy that Reynolds

stresses have negative values at x/H-0,4 and 8. Hussaln n3,

in his study on the coherent structure of turbulent shear

layer, proposed that Reynolds shear stress can have

negative values of vortical structure in a certain

configuration where vortex coalescence process is

dominant. Furthermore, since perturbation strengthens the

fluctuating components in shear layer, so the mean

velocity may be affected by these fluctuating velocities.

The characteristic wave length of vortices can be given as

followsn;

L Uc 1
_-=_-$C (12)

where Ui is the convection velocity of vortices and StE is

the most amplified shedding frequency, which will be

referred later. Suppose the value of U,fl3 i was 0.5 14,then

L has the value of about 5H. This agrees that the locations

of negative Reynolds stress are found to be nearly

identical to the multiples of L. This relation reduces that

negative Reynolds shear stress are brought about by the

enhancement of vortex coalescence by pulsation and the

positions are closely related with the characteristic wave

length. From this, it can be predicted that the vortex

merging is observed at every characteristic wave length in

separation bubble.

The patterns discrete-vortices in the separation

bubble at a certain time(t=288H/Ui) for both cases are

plotted in Fig. 11. It may be noted that large-scale vortices

are more evident in perturbed flow. In addition, the rolling-

up behavior of large-scale vortices, the merging of

vortices and the vortex-shedding from separation bubble

to downstream are also observed. It is noteworthy that the

concentration of discrete-vortices occurs at each multiples

of L. It gives a numerical validation for negative Reynolds

shear stresses in separation bubble.
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Fig. 12 (b) Width of shear layer with time at leading.
edge in excited flow



Fig.12representsthewidth of shear at separation as a

function of dine. Approximately, this width may be

regarded as a distance between the core vortex and the

wall of body. In non-pulsating flow, as time advances, this

width becomes constant. However, in perturbed flow, at

St_, it oscillates with the period of IOHt/U i, which

corresponds to the forcing frequency St,_-O.l. In

perturbed flow, the nascent vortices interact with the

surface from the start of the rolling-up motion, so this is

related to the resultant amplification of disturbances.

The power spectra, which as defined as eqn.(13), was

obtained at the edge of the shear layer where u'FLI,--0.02

and is shown in Fig.13. As pointed out previously, the

power spectra of u near reattachment region also discloses

the broad peak value around St=0.1. Thus, this

.
\ _-, _1_,Unperturbed

0.01 V'/I,_

J_rrtr'--"-'l_z--r r i ii_ I _ i i F_'----_

0.01 0.1 1

Strouhal number

Fig. 13 (a) Power spectrum of u' (=E,.) near separation

line at the edge of the shear layer (r.m.s. u/Ut-0.02)

O•t _1; I i ! . i ltll| f i i i i rlT_ "-'-T-I
0.01 0.1 1

S_rouha| number

Fig. 13 (b) Power spectrum of u' (=E,.) near

reattachment position at the edge of the shear layer

(r.m.s. u/Ut-0.02 )

ioo_ /

";" IOi
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Fig. 14 Power spectrum or p' (=E_,) near reattachmen(

position at the edge of the shear layer (r.m.s. u/Ur,-0.02)

frequency(St=OA)can be consideredas the most amplified

shedding frequency of large-scale vortices, which is also
verified from the power spectra of pressureat the same

position(Fig.14).

[j_,,_,) d(fI-I/Ui)= (u' 2AJi2 , p'xllpu2) (13)

In passing, it is notable that the present result tends to

have appreciably the same value as the results of Mabey is.

It gives the relation of St-X,-0.7 with almost the same

value of the present result. This trend has also been

nodced in other experimental results _. It is s_ss_here

that the most amplified shedding frequency gives strong

effects on the reduction of reattachment length, drag and

enhancement of vortex coalescence in the separation

bubble.

The power spectxa near separation line shows the

broad peak at relatively low frequency(Fig. 13(a)). This is

regarded as an evidence of the flapping motion of

separation bubble, which seems to be attributed to

unsteadiness U'_6. Near reattachment region, the low-

frequency peak is gradually diminished and the broad

peak is centered upon around Sta_.O.1. Roshko 3 called

this frequency as the shedding-type instability, which is

the dominant frequency in separation bubble.

In this study, we assumed that St,_ is identical to

St==. This is attributed to the analogy as follows; If the

pulsating frequency is higher than the initial Kelvin-

Helmholtz frequency Strut, there is no instability region. In

this sense, the slow disturbance can not be amplified. Thus

St,hMbecomes dominant around the value of St,,,.

The way to estimate Sta_ has been tried through a lot



ofexperiments.Roshko_obtainedtherelationfh/U,-0.08,

where h istheasymptoticheight,U, isthevelocityat

separationline and f is the shedding frequency

correspondingtoSt,_.Inthepresentcase,we obtained

thevalueoffh/U,=0.078,whichisnearlyidenticaltothat

ofRoshko.U, can be obtainedfromthetwo-dimensional

Bemoulli'sequation.

U, (1 ^ )la
=%, (14)

It should be noted that the flow geometry of Roshko

is different from the present experimental configuration,

however, the result gives nearly same trends. Roshko's

result was obtained from the frequency of yon Karman

vortex sheet in a blunt circular cylinder. Levi 1_ also

suggested the S_ouhal Law, which defined as fd/Ui-0.16.

In this case, if d=2h substituted, his law gives the exactly
same value of our result. From the aforementioned

comparison, the tentative summary can be suggested that

St._ has its origin in the large-scale structures of

turbulence, regardless of flow geometries. In this

connection, it is believed that Stu._ is approximated by

St,_d. Thus, this forcing fiequency enhances the spreading
rate of flow and vortex coalescence and minimizes the

drag effectively.
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A new formulation (including the
choice of variables, their non-
dimensionalization and the form of the

artificial viscosity) is proposed for the
numerical solution of the full Navier-
Stokes equations for compressible and
incompressible flows with heat transfer.

With the present approach, the same
code can be used for constant as well as

variable density flows. The changes of the
density due to pressure and temperature
variations are identified and it is shown

that the low Mach number approximation
is a special case. At zero Mach number, the
density changes due to the temperature
variation is accounted for, mainly
through a body force term in the
momentum equation. It is also shown that
the Boussinesq approximation of the
buoyancy effects in an incompressible
flow is a special case.

To demonstrate the new capability,
three examples are tested. Flows in driven
cavities with adiabatic and isothermal
walls are simulated with the same code as

well as incompressible and supersonic
flows over a wall with and without a

groove. Finally, viscous flow simulations of
an oblique shock reflection from a flat
plate are shown to be in good agreement
with the solutions available in literature.

Introduction

In a previous work[l], the authors
proposed a formulation for both
compressible and incompressible viscous
flow simulation. First the density is
eliminated in terms of the pressure and the
temperature via the perfect gas equation obtained using a standard Glarkin
of state. This step by itself is not sufficient procedure. The resulting nonlinear system
simply because the equation of state is not of equations are solved via Newton's
valid for incompressible flows. The method. At each iteration a direct solver
formulation is completed using the based on banded Gaussion elimination is

perturbation of the pressure and the
temperature relative to reference values as
the dependant variables. It is shown that
the density in terms of these new variables
approaches a constant as the reference
Mach number vanishes. The above

formulation is generalized in the present
paper to allow for incompressible flows
which are not necessarily isothermal.

To obtain a numerical solution, an

artificial dissipation is introduced by
adding to the governing equations the
Laplacians of the pressure and the velocity
components. An improved model is also
tested which is based on a partial least
square 'procedures. The continuity
equation is modified by a Poission's
equation for the pressure similar to that of
Harlow and Welch[2], and Harlow and

Amsden[3]. The momentum equations are
also modified by Poission's equations of the
velocity components. The first
modification is obtained by taking the

divergence of the momentum equations,
while the second modification can be

related to a vector identity relating the
Laplacian of the velocity vector to the
gradient of its divergence and the curl of
the vorticity. In both modifications, the
evaluation of the nonhomogeneous terms
of the Poissions equations are lagged as in
the deferred correction procedures.

The energy equation is augmented
with second order terms of the total

enthalpy obtained via minimizing the
squares of the convective terms. This
modification is very small in the

neighborhood of a solid surface and can be
interpreted as an artificial streamline
diffusion as in the work of Hughes etal[4].

The present numerical solutions are



employed. The use of finite element
discretizations and direct solvers are not
necessary to obtain numerical solutions
based on the present formulations, and
other viable alternatives are, for example,

pe = _ (3)
k /c

p

The Peclet number is the product of
finite volumes and iterative procedures. Prandtl and Reynolds numbers, where

In the following, the derivation of the
governing equations and the applications _t**

(4)
to some test problems are discussed.

Governing Equations

For steady compressible viscous flows,
the continuity, momentum and energy
equations can be written in terms of the

primitive variables (p, p, q ) including the
effects of a body force as :

Pr _ m

k /c
** p

Equations (I) becomes

V. p q=O ...........

- ---_ -- 1 1 --_
V. pqq=-Vp+_'_ V:x- _rr pK

V. p q H= _e V. kVT+ "_eV.(x .q)- _rr q" p'_

V. p'_ =0

V. pq q =V:x+pf

H:v.k T+ +

where H ._L_YP_.. 1 (u 2 2
= ..lp+2 +v )

"-* ._qi _qj,

and xij = _.(V.q )Sij +l.t (_xj +i_xi )

(1)

(5) .....

In equations (5), the relative effect of
gravity is identified by the Froude number,

2
q**

Fr -- _ (6)
gL

In natural convection problems, the
variation of density due to temperature
difference AT creates a buoyancy term in
the momentum equation. To first order
accuracy, the density variation would be p

For convenience it is assumed that Z. =- = p.. (1- [3 AT) where [3 is the thermal
..................................

g and p = p R T. The two constants R and y expansion coefficient, hence the buoyancy
term is given by

are related to the specific heat constants
C

V

CpCp and cv ; R = -c v and ?= e For the
P

derivation of the above equations, see, for
example, Liepman and Roshko [5]

A standard non-dimensional form is

obtained using the reference values of p
and q in the far field of external flow
problems. The pressure is usually

2

normalized by p** q** and the temperature

2

by q**/Cp . If L is a characteristic length,

two parameters appear in the equations
namely the Reynolds and Peclet numbers,
where

p**q**L
Re -'-_ (2)

[3AT g L_ _2 = K (7)

q** Re

where
3

Gr= 13AT _ L (8)
2
Ix

The above formulation is not suitable

for incompressible flows since in the limit
of zero free stream Much number, both the

normalized pressure and temperature are
unbounded. Two new variables were
introduced in the previous study to avoid

this problem, namely p and T where

* 1
(9)

P =P-P_*P-yM2.

and,



2_

* 1
T =T-T =T--- (10)

(y-l) d

Hence, the equation of state gives

p= , (11)
(y-l)M2 T +I

oo

As the Mach number vanishes, the

normalized density p approaches 1.0, i.e.
the reduced incompressible flow is
isothermal. To allow for density variations
due to temperature changes in the
incompressible limit, in cases of adiabatic
walls as well as walls with specified

temperatures, the variable T is replaced
by

q:=__T___T (12)
T

oo

Equation (11) becomes

y M2 *p +1
_ oo

p= (13)

In the limit of zero Mach number, pTF

approaches 1 and the proper general
dependance of the density on the
temperature is recovered. The isothermal
flow is of course a special case of the above
relation.

The continuity and the momentum
equations are unaltered, the energy
equation becomes

--:_- 1 ~ Ec- -_ Ec_ -
V. pqH=_eV, kgT+_eeg.(x.q) - _r q "p_

(t4)
where

-- -- 2

H=T+ Ec q /2
and,

2
q

Ee =--_=(7-1) M 2 (Ec is the Eckert
oo

p O*

number)
The incompressible limit of Equation (14)
is

V.pqT=_----V,kVT (15)
Pe

Here, the temperature ratio T /T ,
W oo

where T is the average wall specified
w

temperature, enters only through the
boundary conditions.

Alternatively, one can choose

: T To. - To.
T =T-T-=Try- (12)

o. W W

and, in this case
2 •

yMo. p +1
o= (i3)

: Tw
I

T T
oo

and

__---2: 1 ----- Ecw- _--.2, Ecw_ -

V. pqH ---_eV. kVT +-_e V.(x.q) --_r q'pK

w

(14)

where

z = 2
H =T +Ecw q/2

and

2 M2
qo. (y-l) o.

ECw= c"-T-= Tw/T
p w o.

Thus, the present formulation is valid
for compressible and incompressible flows,
with adiabatic or specified temperature
walls. Moreover, it is clear from equation

(13) or (1"3) that the low Mach number

approximation ( see for example Rhem and
Baum[6], Majda[7] and Markle[8]) is a

special case. The Boussinesq approximation
of the buoyancy effects in an
incompressible flow is also a special case of
the present formulation.

It should be mentioned that the above
formulation is not restricted to perfect

gases. A more general equation of state can
be written in the form

Op Op
p = po*+ _'_AT+ _p Ap (16)



or in the non-dimensional form

-- w

(16)

The last term of equation (i'6) always
vanishes in the limit of zero Mach number.

Numerical Method

It is well known that centered schemes
permit,in general, odd and even

equations. For example, the momentum
equations can be written in the form

Vp =g (18)

A poission's equation is constructed by
taking the divergence of equation (18) and
allowing a variable (positive) artificial
viscosity coefficient, one arrives at

_..)

V.eVp= V.eg (18)

Equation (I-8 ) can be also obtained

from minimizing the functional ] e (V p-
decoupling
field[9]. To avoid this problem, different
interpolations are used for the velocity and
the pressure in the standard finite element
analysis of incompressible flows [10], [11].
Recently, Pironeau [12] addressed this issue
for compressible flows as well.

It is also well known that centered

schemes produce oscillatory solutions of
convection-diffusion equations with high
Reynolds numbers, unless impractical
excessively fine meshes are used

In the present study, artificial
dissipation is introduced explicitly in all
equations, to eliminate the wiggles and to
allow for capturing shocks and contact
discontinuities. Two forms of artificial
viscosity are considered. In the first

method, the governing equations become
2

-_3V.p q=_l

2
--="-_ - * 1 -- 1 -_ - _'
g/pqq+Vp -Ree V:X+_rr PK=e2V q

_..)...),

_e v. kVT- _e V.(x .q). _r

(17)
where e's are small parameters of the order
of the mesh size. A standard Galerkin finite

element method is applied to calculate the
solution of equations (17). This form has
been investigated before for both
incompressible and compressible flows
with the standard separate formulations,
With the present unified approach, the
same code is used to calculate compressible
and incompressible cases.

In the second method, the Laplacian
terms are balanced with nonlinear terms

obtained by manipulating the original

of the discrete pressure: _ _' _...... _-> -_.... ! ..... _"7! •
g ).(V p-g) with respect to p, assuming

g is known. The continuity equation is
then modified by the Poission's equation

(18):
Similarly, the Laplacian of the velocity
components can be balanced using the
vector identity

2 -_
V -_=VS-VXoa (19)

where
.-.)

S=V .q

¢o=VXq
TO allow for a variable viscosity
coefficients, one can minimize the

functional (assuming S and co known)

---* )2 2f_(V q-S +_(V X_ -=)

.--)

with respect to q to obtain

.._

V.eVq =V_S-VX¢o_ + f(V_) (19)

In equations (i-8) and (/-9), the
---)

quantities g, S and co are obtained at each
node from their definitions using a
standard Galerkin finite element method
with the same interpolation used for the
other variables. The evaluation of these

terms are lagged and their contributions to
the J'acobians are neglected.

For the energy equation, the
modification is obtained via minimizing

- 2
the functional _ E _-q VH+_) with respect

to H. For convenience, rc ts dropped with the



justification that the artificial dissipation
is mostly needed in the inviscid adiabatic
part of the flow where the relatively
coarse mesh is not capable of resolving the
rc term. In the neighborhood of a solid
surface, a fine mesh is required anyway
and there is no need there of artificial

viscosity terms. The present modification is
very small there since it is scaled with the
velocity. The same remark is applicable for
the treatment of the momentum equations
where the viscous stress terms can be

ignored in the evaluation of the g term.
The variational formulation of the

artificial dissipation terms provides a
natural treatment of the numerical

boundary conditions. Upon integration by
parts, the resulting line integrals are
simply ignored.

Because the modification terms, for the-

continuity, the momentum and the energy
equations are obtained separately by
adopting a partial least squares procedure
for each case the resulting algebraic
system of equations are not necessarily
symmetric.. A full least squares procedures
for all equations coupled together has been
successfully used by the first author to
introduce dissipative terms for the solution
of Euler equations simulating transonic
flows with sharp shock waves [13]. In this
case, it is possible however to construct a
symmetric positive definite system at each
Newton's iteration by a proper choice of
the coefficients of the artificial terms [
Iiang& Povinelli[14]. Unfortunately, such
choices result in smearing the
discontinuities. For viscous flows, they

write the Navier Stokes equations as a
system of first order equations in terms of
velocity, pressure and vorticity and then a
full least squares procedure is applied. The
resulting algebraic equations are
symmetric positive definite, but the
number of unknowns are increased (
almost doubled for three dimensional

problems).
Needless to say, more work is required

to determine the optimal form of the
modification terms and the associated

solution procedures for the general flow
case.

Numerical Results

Three test problems are solved using
the present formulation. The first viscosity
method is used for the first two problems.

Since the Re is relatively low, no artificial

viscosity in the momentum or the energy

equation is needed ( E2=e3=0). For the

modified continuity equation, a numerical

boundary condition, _ =0 at the wall is
_n

enforced at the wall. The third problem is

solved by the two viscosity methods. In the
following some preliminary results are
presented.

I, Driven Cavity with Adiabatic
Isothermal Walls

and

Incompressible (M =0) and

compressible flows ( M =0.4) are simulated

for Re=100 with adiabatic walls. The

pressure contours of the converged
solutions are plotted in figures (I-a) and

(I-b) respectively. Next, the temperature at
the upper and lower walls are fixed and the
calculations are repeated. The pressure
contours are plotted in figures (I-c) and (I-
d) and the corresponding temperature
contours are shown in figures (I-e) and (I-

f).
The effects of compressibility and the

difference of wall temperatures, are

clearly depicted in these figures.

U- Incompressible and Supersonic Viscous
Flows over a Wall with and Without a

Groove

A uniform stream of Re=1000 over a

flat plate is simulated with the same code.
The pressure and velocity profiles at
different locations are plotted in figures
(II-a) and (II-b) for the case of M =0. For

supersonic flow with M = 3 , the pressure,

velocity and temperature profiles are
shown in figures (II-c), (II-d) and (II-e).
The pressure,temperature and density
contours are given in figures (II-f), (II-g)
and (II-h). As expected, an oblique shock



wave is formed due to the boundary layer
displacement effect.

Next, the calculations are repeated for
a flat plate with a groove. The pressure
profiles for the incompressibleflow case is
shown in figure (II-i), while the pressure,
temperature and density contours of the
supersoniccase are plotted in figures (II-
j), (II-k) and (II-1).

III-Inviscid and Viscous flow Simulations

of Shock Reflection from i_ flat plate.

First, an inviscid supersonic flow (

M =2.0) with a reflected shock is calculated.

The results are in agreement with the

obtained via a standard Galerkin finite

element procedure, using equal order
interpolations for all normalized variables.

The unified approach offers a
convenient formulation which allows,

using the Same code, the simulation of
compressible and incompressible flows
where the walls are adiabatic, with

specified temperature distributions or of
mixed type. In particular, the low Mach
number approximation as well as the
Boussinesq ..... appr0x)mation (of the
buoyancy effects) are special cases of the
present formulations,

Obviously, it is always possible to have
more efficient flow simulations for some

special cases. For example, when the speed

exact solution. The pressure contours from of sound is finite, explicit schemes can be
the two artificial viscosity methods are used to integrate the time dependent gas
plotted in figure (III-a) and (III-b). For a equations, in contrast to the

viscous supers0nic flow at Re= 296000 and

lVl --- 2.0, the results are in agreement with

those of MacCormack [15] and with
experimental data. The velocity profiles
before, within and after the separation
bubble are plotted in figure (III-c). The
skin friction distribution is shown in
figure (III-d). The pressure contours from
the first and second artificial viscosity
methods are compared in figure (III-e) and
(III-f).

Cartesian grids and bilinear elements
are used for all the problems tested in this
paper. Applications to transonic flows over
airfoils using unstructured finite elements
are reported in a separate paper [16].

Conclusions

incompressible flow case where a
Poission's equation of the pressure has to
be solved, at each time step, to guarantee
the conservation of mass during the time
evolution process. Another example is the
special case of incompressible ( constant
density) flow where the energy
(temperature) equation decouples and the
solution of the continuity and the
momentum equations provide the pressure
and the velocity components. Therefore,
the use of the present unified approach for
the above two examples is more costly
compared to the use of two separate codes
tailored for the specifics of these two cases.
It is still necessary however to have a
general code for all speeds and all possible
boundary conditions to handle the cases of
mixed nature.

A unified approach for a general flow
simulation is presented. It is shown that all
the normalized variables used in the

formulation are always bounded and the
proper variation of the density due to
changes in pressure and temperature is
recovered in the limit of zero Mach
number.

Two artificial viscosity methods are
applied to obtain numerical results for
some test cases. The governing equations
are modified by either Laplacian's or
Poission's equations for the pressure, the
velocity components and the total
enthalpy. Acceptable solutions are
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Abstract

Recent studies of leading-edge vortex flows

with computational fluid dynamics codes using

Euler or Navier-Stokes formulations have shown

fair agreement with experimental data. These

studies have concentrated on simulating the

flowfields associated with a sharp-edged flat

plate 70 ° delta wing at angles of attack where

vortex breakdown or burst is observed over the

wing. There are, however, a number of discrepan-

cies between the experimental data and the com-

puted flowfields. The location of vortex break-

down in the computational solutions is seen to

differ from the experimental data and to vary with

changes in the computational grid and freestream

Mach number. There also remain issues as to the

validity of steady-state computations for cases

which contain regions of unsteady flow, such as in

the post-breakdown regions. As a partial response

to these questions, a number of laminar Navier-

Stokes solutions have been examined for the 70 °

delta wing. The computed solutions are compared

with an experimental database obtained at low

subsonic speeds. The convergence of forces,

moments and vortex breakdown locations are also

analyzed to determine if the computed fiowfieids

actually reach steady-state conditions.

of the research conducted in this subject area is

provided in Refs 2-4. The theoretical studies

thus far have been for relatively simple cases,

such as a vortex confined in a tube, or an iso-

lated vortex. Although many experiments have been

performed to help understand breakdown, there is

still no general agreement regarding the essential
mechanism of vortex breakdown, and no reliable

criterion is available to predict vortex breakdown

location for a broad range of geometries and

flight conditions.

A flat plate delta wine with sharp leading

edges presents a simple configuration for the

study of vortical flows, including breakdown.

Several investigators have analyzed the flowfields

past delta wings at high angles of attack, both

experimentally (Refs 5-7) and numerically (Refs

8-13). Numerical investigations have been carried

out using both Euler and Navler-Stokes formula-

tions. It has been shown that vortex trajectories

are predicted quite well, at least in the pre-

breakdown regions, using both Euler and Navier-

Stokes equations for a sharp-edged delta wing (Ref

12). Breakdown locations are predicted somewhat

better using the Navier-Stokes equations, although

correlation between the computed and experimental

data for breakdown locations is still inadequate.

Introducti@n

High angle of attack maneuvering has become an

integral part of the flight envelopes for current

and future fighter aircraft. At such flight

conditions vortical flow is a dominant feature of

the flowfield. Vortex flows include complex

features such as massive flow separation, and

breakdown or bursting of vortices, that are not

well understood at present and are topics of

active research. The bursting of the vortex may

result in several adverse effects, such as an

abrupt change in pitching moment, loss in llft,

and buffet, and can be a strict lim/tatlon of its

maneuverability. Predicting and understanding

such flowfields is, therefore, very important.

Vortex breakdown or burst is characterized by
a sodden deceleration of the axial flow in the

vortex core, and a decrease in the circumferential

velocity associated with the rapid expansion of

the vortex core (Ref I). The vortex burst phe-

nomenon has been the subject of much study, both

experimentally (Refs 1,2) and theoretically (Refs

3,4) for more than two decades. A detailed survey
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t Senior Engineer - Aerodynamics

The majority of studies reported in the

literature are based on steady-state calculations,

primarily due to the enormous computation time

associated with time-accurate solutions. Since

the flowfield in the post-breakdown region is

inherently unsteady, caution must be exercised in

interpreting steady-state results. Flowflelds

predicted in the vortical flow region are found to

be strongly dependent on the grid density. For

adequate resolution of the vortical flowfields, a

large number of grid points are required, thus

increasing the computational time proportionately.

Compressibility also plays a role in modifying the

stz_cture of the leading-edge vortex, and thereby

its breakdown location. These are the issues that

are addressed in this paper using computational

solutions. Speciflcally, the effects of

compressibility and grid enrichment on vortex

breakdown locations are discussed. Although only

steady-state solutions of the Navler-Stokes

equations are used to characterize flowfields,

issues related to unsteady effects are also

addressed.

Grid Topology and Numerical Method

An R-O type grid topology for a half-plane

model of the delta wing was used in this study.

Figure I shows the seometry used in this study.

Only cases without sideslip were considered, so a

half-plane wing provided the best grid resolution



around the wing for a given number of points. For

most calculations, the grid dimensions were 61

(axial), 65 (radial), and 89 (circumferential),

with 41 points a!ong the wing in the chordwise

direction. This grid will be referred to as the

medium grid in this paper. A grid embedding

technique was also utilized to refine the medium

grid around the leading edge and the uppe r surface

of the wing from the apex to the trailing edge. "

The extent of embedding in the normal direction

was just far enough to include the region where

most of the vortical flow phenomena was observed.

This refinement of the medium grid yielded an

embedded region with dimensions of gl (axial), 87

(radial), and 133 (circumferential).

Pmuum _ 27.74

- !1

25" Lewmg and Tr_tng Edge 6eve_
{M_sumd NormJ to Edge)
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F_. 1 Fiat Plate Semispan Delta Wing Model

RossbyNumber

As the Rossby number has been used in analyz-

ing the majority of results in this paper, a brief

discussion of this number is in order here. It is

a parameter which is essentially a ratio of the

axial and the circumferential momentum in a

vortex. A Standard definition (Ref 16) is:

Ro = U___
rQ

where U Is the core axial velocity, _ is the

rotation rate, and r is an effective radius of the

vortex. For a mathematical model these three

quantities may be determined analytically, whereas

for experimental and numerical solutions an

integral-based approach is used. In this

approach, a non-dJ.mensional vortlcity (w) is

calculated for each cell using Stokes theorem. An

area (A) of the primary vortical region is defined

by the cells that have w >_ I. This value of w was

chosen empirically. The rotation rate and effec-

tive radius are then calculated as

IwdA,0=_ r=

The axial velocity is calculated by integrat-

ing the velocity component, v', along the vortex

axis, over an area defining the vortex core, A'.

_E v' dA'
U= i-_

The area A' is defined by a circle centered at .

the centrold of vorticity ( _ >_ 1 ) with some

small radius consistent with the size of the

vortex. This procedure results in a numerically-

determined Rossby number. Through correlations

with other methods of determining breakdown and

experimental data on the flat plate delta wing, it

has been found that Rossby numbers corresponding

to burst locations are near 1.0 (Ref 13). In the

pre-breakdown regions, Ro is usually high (above

1.8). In the post-breakdown regions, it is

usually small (below 0.9) in which case the vortex

will not be stable.

The grid was constructed by successive gener-

ation of two-dimensional (2-D) grids normal to the

wing centerllne. These 2-D grids were generated

using a method that solves an elliptic system of

partial differential equations (Ref 14). This

procedure results in a high quality, orthogonal

grid, even near difficult areas such as the sharp

leading edge of the wing.

The CFL3D Euler/Navler-Stokes code (Ref 15)

was used to calculate all of the flowfields in

this study. The computational algorithm is based

on a thin-layer approximation to the three-dimen-

sional, tlme-dependent, conservation law form of

the compressible Navler-Stokes equations. The

code solves the dlscretized flow equations

implicitly using an upwlnd-blased spatial differ-

encing scheme with either flux difference split-

ting or flux vector splitting for the convective

and pressure terms, and central differencing for

the shear stress and heat tr_sfer _erms_ In this

study, the Roe-averaged flux difference splitting

is applied for the spatial terms. Flux limiting

Is also used to alleviate oscillations near high

gradient flow regions.

Result_s

The numerical results presented here have been

obtained using the CFL3D code. Calculations were

performed at several angles of attack. Due to

similarity of the solutions, results are shown

only for an angle of attack of 30 °. An earlier

investigation focused on the vortex breakdown

prediction using Euler and Navier-Stokes (laminar

and turbulent) solutions on the delta wing. We

observed that the laminar results overall provided

the best comparison with the test data (Ref 12).

Therefore, only laminar solutions were attempted

in this study, The Reynolds number based on the

root chord (Re) was held constant at one million.

Calculations at Math numbers from 0.I to 0.4 were

performed to address the effects of compressibil-

ity on the vortical flow and breakdown position.

The pre- and post-breakdown flowfleld regions were

examined using the Rossby number analysis (Ref 13)

to investigate flowfield unsteadiness. Also, grid

embedding was used to examine grid enrichment

effects on predicted vortex breakdown location.

Comparisons between the computed and the wind

tunnel test data are shown wherever applicable.

The test database consists of surface pressures,



three-component Laser Doppler Velocimetry (LDV)

and seven-hole probe flowfield surveys (Ref 12).

Math Number Effects

The experimental data used for Comparison in

this study were obtained at a very low freestream

Math number (H _ 0.05). It is difficult or

sometimes impossible to solve these low speed

flows with a compressible CFD code since the

solution may converge only after a prohibitively

large number of iterations. Therefore, earlier

numerical investigations (Ref 12) on this geometry

were conducted at a freestream Math number of 0.3,

for efficiency considerations.

Even at a relatively low freestreamMach

number, the local Math number in the vortex core

may extend into the compresslble range. This is

due to the accelerated flow at the core of the

vortex which may experience local Mach numbers two

to three times the freestream value (Ref 17). To

determine if compressibility indeed affects the

vortex breakdown location, computed solutions at

four different freestream Math numbers (M= = 0.I,

0.2, 0.3, and 0.4) were analyzed on the medium

grid. Figure 2 shows the effect of freestream

Math number on the local Math number in the vortex

at 25Z root chord. It is apparent that the flow

in the core of the vortex shown in Figures 2c-2d,

corresponding to H= = 0.3 and 0.4, is well into

the compressible range (local Math number _ 0.7).

In fact, for M= - 0.4 it reaches the sonic condl-

tion. It is interesting to note that for all

cases the local maximum Math number is about two

and a half times the freestream value.

(.) L_t,,-o.lo ('ol M,. o.2o

0.$

The location or trajectory of the leading-edge
vortex for the different Mach numbers is shown in

Figure 3. Three orthogonal views of the wing are

given in this figure to completely define the

primary vortex location relative to the wing.

Flow visualization data are also shown for com-

parison. The vortex location from the computed

solutions was identified by locating the points of

mlnJmum total pressure in the primary vortex at

each axial station. The computed vortex trajec-

tories show an insensitivity to compressibility

effects as there is good agreement with each other

and with experiment in the pre-breakdown region.

The figure also indicates that the vortex follows

an almost linear path in the pre-breakdown

regions, whereas the path becomes random beyond

the breakdown. The point of minimum total pres-

sure after breakdown is observed to enter a

swirling type motion as it moves downstream. This

indicates the spiral-type vortex breakdown that is

usually observed on the delta wings• The experi-

mental vortex locations are based on a visual

determination of an average vortex center loca-

tion, end therefore do not exhibit this swirling

motion after breakdown.
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Fig 2. Effect of Freestream Mach Number on Maximum

Local Mach Number, Medium Grid,. = 30 °' x/c = 0.25

Fig. 3 Comparison of Predicted Vortex Locabon
with Test Data, Medium Grid, a= 30" Re = 1 x 10'



Figure 3 also shows that with increased

freestr_ Mach number, the computed bre_dovn

location moves downstream. For the cases analyzed

here, the movement is as high as 10% chord. It is

postulated that at higher Nach numbers there is a
lesser influence of the downstream flowfield on

the flowfield upstream of breakdown. Although

Oscillations in the integrated forces and

moment histories indicate the presence of inherent

flow unsteadiness at high angles of attack.

Figure 5 shows typical histories of computed lift,

drag, and pitching moment coefficients for M =

0.3. Although the solutions appear to be faTriy

well converged after I000 iterations, there are

expected to be the worst prediction of breakdown, oscillations in the forces and moment even after

the computed location for M = 0.4 yields the best

agreement with the test data. This may be fortu-

itous, as the test data were obtained at a very

low Mach number (H _ 0.05). However, there are a

number of other issues such as wind tunnel wall

effects, transition, etc., that may have signifi-

cant effects on the breakdown locations. No

attempt has been made to resolve these issues in

this study.

The computational breakdown locations shown in

Figure 3 were obtained by examining the axial

velocity contours. Ahead of breakdown, the

contours usually have a sy_etric structure with

the maximum axial velocity residing in the

well-defined core of the vortex. At axial sta-

tions further downstream, however, the core

becomes more diffuse. Eventually, the contours

become asy_etric with lower axial velocities at

the center of the vortex than on the periphery,

The breakdown location is thus determined by

locating the axial station where this change in

the axial velocities is first observed.

This method of determining the breakdown

location has been applied successfully for delta

wings, and is consistent with experimental obser-

vations (Ref 12). This method has also been used

to establish a breakdown criterion for delta wines

using Rossby number (Ref 13). Figure 4 shows how

the Rossby number behaves along the wing chord,

for the four different Mach numbers. It has been

shown in Ref 13 that when the Rossby number

reaches a value on the order of one, breakdown is

expected to occur. Although such an observation

is based on a very limited amount of experimental

and computational results, the present results

(Figure 4) also support such a finding. In this

figure, the breakdown locations shown in Figure 3

are indicated. As can be observed, the Rossby

numbers corresponding to breakdown have values

nQar one.

Unsteady Effects

All calculations shown in this study were made

using a local time stepping scheme to accelerate

convergence. Thus, time-accurate solutions were

not obtained. There was evidence, however, of

small instabilities in the CYD solutions. These

solutions were examined to determine the effects

of this unsteadiness on the vortex breakdown

location. It should be noted that time-accurate

calculations must be performed to obtain data for

a true time or frequency response analysis.

2400 iterations. The magnitude of the oscilla-

tions are, however, on the order of 2% of their

mean values. Also, further iterations on the

solution did not improve the convergence. The

oscillations in forces and moment are indications

of inherent flow unsteadiness for such conditions.

For improved predictions of vortex breakdown

location, it is important to investigate the

sensitivity of breakdown location to the flowfield
unsteadiness.

Although time-accurate calculations should be

used in obtaining the unsteady effects, they

require an exorbitant amount of computation time.

Therefore, a simpler ad-hoc method was sought for

quantifying the effect of unsteady flow on break-

down. The Rossby number has shown promise in

predicting flow unsteadiness in the vortical

region. Figure 5a shows a typical history of

Rossby number at a location (20_ root chord) well

upstream of breakdown, as the solution is executed

for a freestream Mach number of 0.4. Figure 6b

shows a similar history at a location (80% root

chord) downstream of breakdown. Ahead of break-

down, the Rossby number approaches a nearly

constant value (about 1.9) as the solution con-

verges, implying a nearly steady flowfield. On

the other hand, downstream of burst, the Rossby

number does not converge. This indicates a

significant amount of inherent unsteadiness in the

post-breakdown region. Such an observation,

steady flow upstream of burst and unsteady flow

downstream of burst, is also consistent with

experimental observations (Ref 17).

The effects of post-breakdown unsteadiness on

vortex breakdown location may also be examined

using the Rossby number. A breakdown location

history determined using a critical Rossby number

(assumed to be 1.0, based on Ref 13) for M® - 0._

is shown in Figure 7. As the solution converges,

vortex breakdown first occurs at the trailing edge

of the wing and then moves upstream to about 50%

root chord. The breakdown location can be

observed to be oscillating between chordwise grid

planes over approximately 5% root chord after 2000

iterations. Although, the oscillations in burst

location shown here are based on computational

results using the local maximum time stepping

scheme, experimental breakdown location for the

70" delta wlng has also been observed to dynami-

cally oscillate about 5% root chord for this angle

of attack,
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Grld Enrichment Effects

The mdium grid used in this study is consid-

ered too coarse for adequate resolution of the

vortical flowfields. Although only 19cal ttme

stepping was considered for this investigation,

adequate spatial resolution of the fl0wfleld is

also necessary for time-accurate calculatlons. To

investigate the effect of grld refinement in the

vortical flow region, a grid embedding procedure

was used in which a subset of the medium grid was

enriched equally in all index directions. The

grid was enriched over the upper surface of t_he

wing end around the leading edge to better resolve

not only the vortical flow region but also the

feeding shear layer. The extent of embedding in

the normal direction was Just far enough to

include the region where most of the vortical flow

phenomena is observed. This refinement of the

medium grid yielded an embedded region with
dimensions 81 (axial), 87 (radial), and 133 _

(circumferential). Figure 8 shows the embedded

region in a crossflow plane.

F'_. 8 Cross-Section V'mw of the Embedded Medium Grid

Grid Dimensions in the Embedded Region: 81 x 87 x 133

The effect of grid refinement on chordwise

velocity (normalized by freextream velocity) along

a line parallel to the upper surface of the wing

is shown in Figure 9. This line was selected to

coincide with the maximum chordwise velocity in

the LDV data which should be near the center of

the primary vortex. Results for both medium and

embedded grids are compared with the LDV data.

The computed solutions underpredlct the velocities

compared with experiment, however, grid embedding

improves the solution considerablY. In general,

the shape of the profile is better predicted,

although the comparison with the test data is not

very good. Without grid embedding, the maximum

velocity at the vortex center is only about 2.3

times it's freestream value, whereas with grid

embedding it is increased to about 3.0, which is

closer to the experimental value of about 3.4.

Also, outboard of the vortex center location, a

slight flattening of the profile is due to the

secondary vortex that is predicted better with

grid embedding.
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Fig. 9 Comparison of Chordwise Veloc_ Along a Line

Parallel to the Wing Upper Surface
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Improved results with grid embedding can also

be seen by analyzing the streamwise vorticity

contours (Figure I0). These contours are shown in

the pre-breakdown region (25Z root chord), for

both the medium and embedded grid solutions end

also for the experimental data obtained using LDV.

Although the computed contour levels are overall

very similar to the experimental data, the maximum

value of vorticity in the vortex core is nearly

5.5 times greater in the LDV data then in the

computed solutions with the medium grid. Much

improvement is found with the grid embedding, for

which case thls ratio is about 3.4. The resolu-

tion of vorticity in the secondary vortex region

and in the feeding shear layer also is better with

the grid embedding.
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Figures 9-I0 clearly demonstrate the sensi-

tivity of the grid resolution on flowfleld details

in the vortical flow regions. The effect of

increased grid density on breakdown location, as

determined again by the Rossby number of 1.0, is

shevn in Figure 11. The burst locatlon moves

upstream by about 5Z root cl_with the grid

embedding. Unlike the comparisons shown in

Figures g-10, the comparison wlth the experimental

breakdown location has degraded with increased

grid density. This discrepancy may be due to not

modeling the wind tunnel walls, as the tunnel

blockage was approximately 10% at 40" angle of

attack.
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Fig. 11 Effect d Grid Embedding on Rossby Numb_ Along
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Effects of Hach number, flowfleld unsteadi-

ness, and grid embedding on vortical flow struc-

ture and vortex breakdown location were analyzed

using Navier-Stokes solutions on a 70" delta wing

with sharp leading edge. Analysis was performed

for only laminar flow based on previous investi-

gations and in order to eliminate turbulence model

effects. The computed results were compared with

an experimental database obtained at low subsonic

speeds. The computational solutions, in general,

showed very good agreement with the test data as

far as the vortex trajectories were concerned.

However, mixed results were obtained for the

streamwlse vorticity, velocities near the vortex

core, end vortex breakdown locations.

For freestream Hath numbers above 0.3, the

computed flow in the core of the vortex was found

to be well into the compressible range (H ! 0.7).

In fact, for H - 0.4 it reached the sonic condi-
tion. With the increase in freestream Hath

number, the breakdown location moved downstream.

The movement was as high as 10Z of the root chord

for the cases investigated. It is postulated that

at higher Hach numbers there is a lesser influence
of the downstream flowfield on the flowfield

upstream of breakdown.

Oscillations in forces and moment after a few

thousand iterations were used as indications of

unsteadiness in the flowfield. Although oscilla-

tions in forces ware less than 2Z of their mean

values, the breakdown location was found to wander

over approximately 5Z of the root chord, This was

consistent with the test data.

Prediction of the chordwise velocity near the

vortex core was improved with grid embedding.

Without grid embedding, the maximum velocity at

the vortex center was only about 2.3 times its



freestream value, whereas with grid embedding it

was increased to about 3.0, the experimental value

being 3.4. Prediction of streamwlse vortlclty

contour levels was also much improved with the

grid embedding. The maximum vortlclty contour

level increased from 3.0 to 5.0 with the increased

grid resolution, experimental value being 17.0.
The burst location, however, moved upstream by

about 5g root chord, resulting in a degradation in

correlation with test data.

The Rossby number value of about 1.0 at vortex

breakdown was used in interpreting the majority of

results in this study, and provided a useful

method for fast determination of vortex breakdown

locations. Other issues such as effects of wind

tunnel walls, transition, and turbulence modeling

still remain unresolved.
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ABSTRACT --

Tests at M = 8.2 show that a simulated rocket

plume at the base of a blunted cone can cause large

areas of separated flow, with dramatic effects on the

heat transfer rate distribution. The plume has been

simulated by solid discs of varying sizes or by an

annular jet of gas. Flow over the cone without a

plume is fully laminar and attached. Using a large

disc, the boundary layer is laminar at separation at

the test Reynolds number. Transition occurs along the

separated shear layer and the boundary layer quickly

becomes turbulent. The reduction in heat transfer

associated with a laminar separated region is followed

by rising values as transition occurs and the heat

transfer rates towards the rear of the cone

substantially exceed the values obtained without a

plume. With the annular jet or a small disc,

separation occurs much further aft, so that heat

transfer rates at the front of the cone are comparable

with those found without a plume. Downstream of

separation the shear layer now remains laminar and the

heat transfer rates to the surface are significantly

lower than the attached flow values.

/NTROOUCT]0N

A rocket exhausting from the rear of a vehicle can

severely modify the flow in the base region. In

particular, exhaust jets can expand so spectacularly

at high altitude that flow separation Is induced over

the rear of the body ahead of the jet plume.

The flow over a blunted cone at M = 8.2 was
w

studied in the experiments described here. The

exhaust plume was simulated initially by attaching one

of a number of solid discs of varying sizes to the

base of the cone; in Inter tests, a radial jet of gas

(air, helium or argon) was used to more closely model

a real plume. Platinum thin film gauges measured the

heat transfer rates on the cone surface and schlieren

photographs showed the separated flow patterns.

EXPERIMENTAL DETAILS

The Hypersonic Gun Tunnel

A sketch of the tunnel is shown in figure I.

Measurements of reservoir pressure, made at the end of

the barrel, and stagnation pressure l_n the test
section, confirm calibrations made earlier. '

The test conditions, based on the assumption of

perfect gas flow, were:

Mm = 8.2, R.a, = 2.3"/ x I05 per inch

Pm = 0.138 pain, P%, = 1580 pela

T m = 89.3K, To m = 1290K

The useful running time of the tunnel was

approximately 2Sins.

The Blunted Cone Model

A 7 ° semi-angle blunted cone model was

manufactured from "Macor" machinable glass-ceramic and

instrumented with nine platinum thin film gauges as

shown in Figure 2. The gauges were painted directly

onto the cone surface and baked. Conductive paint

provided the electrical connection between the gauges

and brass contact rods which, as shown in the figure,

ran transversely through the model. The rods were

connected to leads which were taken away internally

and out through the support sting to the data

acquisition system. The gauges were calibrated by

immersing the model in a heated oil bath and recording
the variation of electrical resistance with

temperature over a range of approximately 20°C.

The discs simulating the plume were made from

aluminium and mounted flush against the base of the

cone. Later tests were made using a plenum chamber

fitting mounted on the support sting aft of the model.

The exhaust gas (air, argon or helium} was fed to the

chamber from an external supply via four tubes

attached to the sting, as shown in figure 2b. The

large pressure ratios used, typically between _t0 and

P_SO, choked the slot between the base and the plenum

chamber, so that a radial Jet sheet exhausted into the

free stream. The width of the slot could be varied

between tests.

Heat Flux Measurement

The thin film gauges and data acquisition system

produced records of electrical signals which were

proportional to the temperature variation of each

gauge with time. These signals must be integrated to

find the heat transfer rates which are of interest.

Two methods were used during these tests.

The first method used an analogue network to

convert the signal from each gauge into one

proportional to the variation of heat transfer 3 rate
with time. Such a network is described by Meyer , and

his design was adopted with circuit components chosen

to suit the running time of the gun tunnel.

The second method involved numerical integration

of the temperature signals, which were either stored

digitally on_ floppy discs or plotted out into

hard-copy form. Data points taken from either

representation were used to calculate heat transfer

rates using the method described by Schultz and
Jones 4.

Both methods were used initially, but the analogue

networks began to deteriorate and become unreliable

with age, so that most of the results presented below

were found using the numerical technique.



RESULTS AND DISCUSSION

Blunted Cone

Figure 3 is a schlieren photograph of the flow

around the cone when no exhaust plume is present. The

boundary layer is laminar and attached along the full

length of the model and the contour of the bow shock

is smooth and continuous. As will be seen later, a

turbulent layer can generate waves of sufficient

strength to visibly perturb the shock shape.

Non-dimenslonal rates of heat transfer to the cone

surface, as measured by the thin film gauges, are

plotted in the form of Stanton number vs free-stream

Reynolds number based on axial distance x. Figurse 4
shows the heat flux distribution found by Sperinck in

an earlier series of tests with an identical model in

the Cranfield gun tunnel. The theoretical value for

the stagnation point Stanton number is 0.029, so the

figure shows how rapidly the distribution falls around

the nose of the cone: by the first measuring station,

St is less than 107. of the stagnation _value. Figure 4

also presents a theoretical estimate of the heat

transfer rate distribution on a sharp cone, calculated

using the Mangler transformatioo on theoretical flat

plate v_lues, as described by Crabtree, Dommett and
Woodley . Over the lnslrumented region of the model
both curves show the heat transfer dropping as Ro'I/z:

X

which confirms the laminar nature of the flow.

Blunted Cone With Disc

Discs ranging in slze from 1.25 to 2.1 times the

base diameter of the cone were fitted at the rear of

the model to simulate an underexpanded exhaust plume.

Schlieren photographs of the flow over the model

showed that the presence of the disc caused separation

along a large part of the length of the cone. Figures

S and 6 illustrate the two extremes of the range of

disc sizes tested, with d/d values of 1.25 and 2.1
s

respectively.

With the smallest disc fitted (figure 5), laminar

separation occurs at an x/L value of slightly under

0.6, followed by a laminar shear layer. Towards the

rear of the separated zone, the shear layer thickens,

the edge becomes ragged and waves can be seen

emanating from the boundary of the separated region.

As the size of the disc increases, the separation

position moves forward, as shown in figure 7. The

shear layer remains laminar initially but soon become

wavy and appears turbulent. With the largest disc

(figure 6), the detached region begins very close to

the nose, separatlon occurring at x/L, _ 0.07. The

photograph indicates a laminar shear layer rapidly

becoming transitional and then turbulent over most of

the length of the cone.

Heat transfer measurements were made using discs

of size d/d B = 1.25, 1.4 and 2.1. Results from the

latter two cases are shown In figure 8 together with

the cone-only distribution. Results from the first

case are described later. It Is expected that heat

transfer in a region of detached laminar flow will be

reduced by comparison with that in an attached laminar

region. This may be seen by comparing the appropriate

portions of the heat flux distributions, in the case

of the larger disc (d/d O = 2.1}, separation has

already occurred ahead of the first thin film gauge,

so that the Stanton number at that point is

considerably less than that found in the cone-only

case. This is followed by a rising heat transfer rate

as the free shear layer undergoes transition to

turbulent flow, so that the value of St exceeds that

of the attached flow case over more than half the

length of the cone.

For the smaller disc (d/d = 1.4), separation
s

takes place at about x/L = 0.3. Ahead of this station

the Stanton number is comparable with that of the

cone-only case. After separation, the detached

laminar region exhibits a drop in St, followed by a

sharp increase as the shear layer becomes turbulent.

These t_'ends agree with those obtained by Needham v

and Holden- in their respective studies of (i) flow

past a compression corner and (ll) flow over a step on

a flat plate. In both cases, - significant reductions

in heat transfer rate were found in regions of lamin_

separated flow with a subsequent rapid rise as

transition occurs.

The flow past the cone-disc configuration is

reminiscent of that over a spiked body where the bow

shock ahead of a blunt body interacts with the

boundary layer growing along the spike. The shock

wave causes separation and the separation point moves

to near the tip of the spike, wi_th dramatic changes to

the effective shape of the body. In our tests, the

blunted cone represents the spike and the disc, t_he

blunt body. Adding a disc effectively changes the

body shape from the initial slender blunted cone to a

less-slender cone of semi-angle e given approximately

by tan 8 ffi R/L.

Blunted Cone with Radial Jet

Initial tests with the external gas supply

examined the effects of slot size and gas pressure.

Alr jets with total pressures ranging from l to 6

atmospheres were used with slot widths between 0.5 and

4.0 ram, For comparison, the static pressure on the

surface of the cone for attached flow was calculated

to be about 0.025 atmospheres.

The effect of gap size was found to be small over

most of the range of widths tried, and a standard slot

size of 4 mm (later, 4.5 ram) was adopted for the

remainder of the tests. For a given gap width, the

extent of the separated region increased with jet

total pressure, as expected, and the variation of

separation length with jet pressure for one slot size

is included in figure 7. The curve shows that for a

supply pressure difference above one atmosphere the

increase of separated length with pressure is

approximately linear. Clearly, a very high Jet

pressure would be needed to cause separation near the

nose as was achieved with discs with values of d/d
B

greater than about 1.6.

Tests were made using helium and argon as the

exhaust gas to assess the effects of using a foreign

gas and of gases of differing molecular weights, The

results were perhaps surprising: compared to an air

jet of the same supply pressure, both argon and helium

produced slightly larger separated regions. Assuming

choked flow with the gas issuing at a Mach number of

one, the jet velocity for helium is three times that

of air but the density is only I/'/th. Thus, the mass

flow rate for helium is lower than for air, but the

momentum and energy fluxes are greater.



Forargon,the jet speed is less than that of air

by some seven percent, but the density is greater by

38 percent, so that the mass, momentum and energy
fluxes all exceed those of air. This would appear to

imply that the momentum or energy fluxes are of more

importance in determining the extent of separation,
but a more careful analysis of duct losses and actual

exit conditions would be needed to determine the

merits of foreign gas injection.

Heat transfer measurements were made for the case

of an air jet with a supply pressure of 75 psig (6.10

atmospheres total pressure) exhausting through a 4.5

mm gap. Figure 9 is a Schlieren photograph of the

flow past the model and plume. Separation occurs at
x/L = 0.45, after which the by-now familiar pattern of

an initially laminar shear layer undergoing transition
to turbulent flow over the rear of the body may be

seen. The flow is very like that seen in figure 5 for

the model with a small disc (d/d =, 1.25), and the
B

separation positions are similar

Nevertheless, a gas jet will entrain flow in a

manner which a solid disc of any size cannot emulate.

Hence, for a given separation station, one would

expect the shape of the conical separated zone to be

more acute with jet-induced separation. The

experimental data supports this view.

The flow pattern within the separated region is

another example of the difference between using a

solid disc and a gas jet to simulate an exhaust plume.

Figure 10 shows sketches of patterns proposed by the
authors for the mean flow in each case. With a solid

disc mounted at the rear of the cone, the separated

flow re-attaches itself to the surface of the disc,

producing a region of contraflow as one might expect.
The situation is more complex with the gas jet: the

boundary conditions have changed, and the requirement

for the flow near the plume boundary to move outwards

with the jet gas necessitates the presence of a oair

of counter-rotating vortices to satisfy both that

requirement and the need for an area of reversed flow.

The similarity between the air jet and small disc
cases is also seen in the heat flux distributions

shown in figure II. Since separation does not occur
in either case until well back along the cone body,

the Stanton numbers found on the first forty percent

of the length of the model are comparable to those

obtained for the cone alone. For the air jet case,

separation occurs just aft of this point and the heat

transfer rate drops dramatically in the region of

detached laminar flow, before rising slowly over the

rear of the cone as the shear layer appears to become

turbulent.

The small-disc case exhibits like behaviour,

although separation is slightly further to the rear.

Thus, the locations at which the heat flux

distribution decreases sharply and then rises gently

are a short distance behind those found using the air

jet.

As noted previously, the heat transfer rate

distributions shown in figures 8 and II agree with

similar measurements made in other investig_ations.

Figure 12 shows the distribution found by Holden- when

studying the flow past a step on a flat plate at Mm =

I0. The step causes laminar separation on the plate

and the heat transfer distribution reflects this

behaviour. The separated shear layer subsequently

undergoes transition, and the initial drop in Stanton
number is followed by a rapid rise as the layer

becomes turbulent.

General Comments

Flow steadiness is an important factor in any

experiment performed in an intermittent facility like

a gun tunnel. In the case of these tests, comparison

of schlieren photographs of nominally identical tunnel

runs produced confidence that the flow could be

considered as reasonably steady. There was inevitably

some variation between runs, as indicated by the

scatter in the heat flux results, but the photographs

showed the flow patterns to exhibit satisfactory

repeatability.

It is also worthy of note that the flow past the

cone and simulated plume was not perfectly

axi-symmetric. It was consistently found during

examination of Schlieren photographs that separation

on the underside of the model occurred slightly

further forward than that on the top side. This

indicates that there is a three-dimensional nature to

the flow, and the locus of separation points around

the surface of the cone is not the circular

cross-section of the body expected in perfect

axi-symmetric flow.

_QNCLUSIONS

The flow over a slender blunted cone at Mm = 8.2

and R. = 2.3"/ x 10 s per inch was attached and

laminar.

"Simulating an exhaust plume from the base of the

cone, either by fitting a solid disc or by providing a

radial gas jet from a choked slot, produces widespread

separation. The larger the disc, or the greater the

pressure of the gas jet, the further forward the point

of separation moves.

The shear layer is laminar at separation but can

undergo transition to fully turbulent flow before

reaching the base of the cone and the "plume".

The effect of the laminar shear layer is to

decrease the heat transfer rate, by comparison with

that for the cone alone, over the surface immediately

behind the separation point. As the layer becomes

turbulent, the heat transfer rate begins to increase

and can exceed that of the cone by itself by a

considerable margin. Whether the heat flux on the

rear of the cone with plume is greater or less than

that of just the cone depends on the extent of the

separated region: the further forward the separation

point, the higher the heat transfer to the rear of the

cone.
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NOTATION

specific heat at constant pressure

disc diameter = 2R

base diameter of cone

cone length (fig.2a)

length of separated region on cone

Mach number in the test section

static pressure in test section

reservoir pressure

Prandtl number (taken as 0.'12 here)

heat transfer rate

q on flat plate

disc radius (fig.2a)

Reynolds number per unit length

= Pw um / _m

Reynolds number = pmumx/_m

recovery factor = _/Pr

Stanton number = cl/p._CpCT - T)
adiabatic wall temperature

. • r. M:)
temperature In test section

reservoir temperature

velocity in test section

axial distance

ratio of specific heats

viscosity in test section

density in test section
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Abstract

The purposeofthisstudyistoinvestigatetheflow and heat
transfercharacteristicsof a combined forced and free

convectionflow in a curvedduct.Solutionsare obtainedbY
solvingthe low Mach number model of the Navier-Stokes

equationusinga controlvolume method.The finite-volume

method has been developod with the use of a predictor-
correctornumericalscheme and some new variationsof the

classicalprojectionmethod. Solutionsindicatedthat the

existenceof buoyancy forcehas changed the entireflow
structureinsidea curvedduct.Reversedflowatbothinnerand

outerbend isobserved.For moderate Reynolds number the

upstreamsectionoftheducthas been significantlyinfluenced

by the freeconvectionprocesses.In generalhealtransferis
strongattheinnerbend ofthebeginningoftheheatedsection
and attheouterbend on thelasthalfoftheheatedsection.The

maximum velocity location is strongly influence by the
combined effects of buoyancy and centrifugal forces. Strong
buoyancy force can reduce the strength of the secondary flow
where it plays an important role in mixing.

1) Introduction

Steady flow in a curved duct is of practical engineering
interest and was first investigated by Dean [1], [2]. The main
concern of the fluid mechanics problem is to determine the
total pressure drop in the flow since a duct with a bend has a
higher pressure drop due to the secondary motion of the fluid.
Interest also occurs in this type of flow for the mixing of
chemicals by the secondary motion. If the mixing is adequate,
then additional pumping is not required.

Combined forced and free convection is of great importance
in the design of heat exchangers like the cooling of electronic
equipment by Freon-12 where inside the cooling coil the
buoyancy force is higher than convection force. Moreover. the
effect of secondary flow is of great important as it can enhance
theoverallheattransferratelikedesignofa coolingcoflinside

a nuclear reactor. Unlike the straight duct flow, which can he
solved analytically by using the parallel flow assumption, the
flow in the curved section is not parallel and is more complex.
Most of the recent research efforts by Masiliyah [3]_Soh and
lkrger [4], [5], and Yao and Berger [6], are limited only to a
curved duct because the problem can be written in a toroidal
coordinate system. This is the fwat three dimensional numerical
study of a curved duct with straight duct(s) attached where the
usage of a noworthogonal mesh is required.

Numerical solutions are obtained by solving the governing
equations in a body fitted, non-orthogonal, coordiua_ system.
A conlml volume form of the governing equations is used in

thisstudydue toclearphysicalinterpretationof the integral

equations.A detaildiscussionof the initialand boundary
conditionsfor thisproblem isalsoincluded.Solutionsare

presentedintheform of two-dimensionalcontoursand three-
dimensionalsurfacecontoursin orderto indicatethe local

variations.One-dimensionalplotsareused toshow theglobal
results.A detaildiscussionof theflowstructureand localheat

transferrateofthecombined forcedand freeconvectionflow

fieldand itsdifferentwith a forcedconvectionflow fieldis

alsopresentinthisstudy.

2) Governing Equation:

For internal flow, the dimensionless variables are defined as
follows:

T =_.p___-_-ffiL ;V = U__ ;-p-= P-Pnff
Pinlet Pinlet U2ref '

T- Tinle t __ t Umf

where Pinlet is the density at the inlet of the duct, L is the

reference length and is the radius of the duct, Tinlet is the

temperature of the inlet fluid, TH is the maximum temperature

of the system, t is time, Uref is the reference velocity scale and

is defined by the mean velocity at the inlet which has the
followingform:

Uw.f=

V_._dAi_

dAm_t

The resulting dimensionless governing equations (omitting
over bars) with the Bonssinesq approximation have the
following forms:

1) Continuity Equation:

a_IIIp v+IIpV. dA--0
_t

where tisthetime.p isthedensity,V isthevelocityvector,

n istheunitnormalvectorpointingoutofthecontrolvolume,
dV isthefinitevolume,and dA istheareaon each surfaceof

finitevolume.



2)Momentum Equation:

fffV +pfff(V.¢)Vdv
'V 'V

Ra iffpTdV

3) Thermal Energy Equation:

a° HfTdV+ fH(_"_}TdV
_t _ ¢,

a _H pP d,v--ffVT. dA+EcP,ffj",dr
V 'V'

+ffppV' d. )

_ fzI3L3AT Buoyancy Force
where Rayleigh Number (Ra) - vet - Viscous Force

v Viscous Diffusion
Prandtl Number (Pr) = -- =a Heat Diffusion

U2 Mechanical Energy
Eckert Number (Ec) = _ -

CpAT - Thermal Enery

where [_ is the coefficient of thermal expansion, g is the

gravitation vector, AT is mmperamre difference defined as TH-

Tinle t, U is the reference velocity scale defined as the mean

inlet velocity, and v is the kinematic viscosity of the fluid.

For subsonic flow (i.e. low Much number) with a moderate
Reynolds number, the Eckert number is much smaller than
one. Hence the viscous heating term and the flow work term
can be neglected. The dimensionless thermal energy equation
has the following form:

0 I_JTdV + _('_.'_)TdV=_'I_T*'_dA
Ot ¢ ¢ a

A detail derivation of the low Much number model equations
with the Boussinesq approximation is shown by Yam [7].

3) Problem of interest

An experiment with combined forced and free convection in a
curved duct has been performed by Cheng and Yeng [8], [9].

In the experiment, a curved duct with a straight long entrance
length is fabricated. The straight long entrance length is to
ensure a fully developed parabolic velocity profile at the
entrance of the heated curved section. (We will later see that

this is not always true). A hot water jacker is inserted into the
curvedsectiontocreatetheheatedsection.The heatedcurved

section is then oriented in a vertical upward direction. Room
air from a compressor is used as a working fluid inside the
assembly. Smoke generated by burning paper straws is injected
at the straight duct entrance. Photographs of the secondary
flow patterns are taken at the exit of the curved duct where the
heated air is discharged directly into the surrounding as jet. A

schematic of the experimental apparatus is shown in Figure 1.
The parameters used in this experiment (Reynolds number of

59.92 and 246.69, Rayleigh number of 2.57x104, curvature

ratio of 1:10.9 and Prandfl number of 0.7) are imported in the
current numerical study.

4) Numerical Methods

I) Coordinate System

The problems of interest have geometries that are very
difficult to describe using a Cartesian coordinate system. Thus,
a coordinate transformation is used to define a body fitted
coordinate system. For the problems of internal flow in a
curved duct with straight duct attached, a three dimensional

boundary fitted, non-orthogonal coordinate is used. Typical
grid systems foi the surface andsections of the curved duct are

shown in Figure 2 through 5.

All derivative terms in the equation of motion are evaluated
with the use of the generalized coordinates and this involves a
coordinate transformation. A detail derivation of the

transformation is shown by Dwyer and Dandy [9] and Yam
[7].

ID Calculations Of Geometry

The control volume equations (integral equations) consist of
volume terms and surface terms. The volume and surface area

of a control volume can be obtained by the usage of vector
operations. For control volumes with cell centers located at a

singular point (like those at the axis ofthe ellipsoid grid), all
the dependent variables can become coupled with the adjacent
cell through the convection and viscous terms. This leads to
difficulty with implicit solvers. A simple solution to this
problem is to put the cell surface at the singular point. As
shown by the governing equations, the only terms that exist at
the control surface are those of the flux and pressure terms.
Since they are being multiplied by the surface area of zero, the
excessive coupling is removed. The cell center of the control

cell however is still coupled to the rest of the system by the
remaining five surfaces. A detail discussion of is shown by
Yam [7].

HI) Finite Volume Eau_tions

In this study, all the variables are defined at the center of
the control ceil. When variables are needed at the surface of

the ceil, averaging is performed, and gradients are evaluated
with a second order finite difference with respect to the cell
surface. Thus, discretization of the governing equations in
generalized coordinates is second order accurate in space.
However, for the internal flow, the resulting maximum
Reynolds number that we can run to obtain solutions is limited
to 200. One way of increasing the Reynolds number is by
adding more grid points to the physical domain. This, however,
is limited by the capacities of current computers. An
alternative is to add at'tificial dissipation only to the stream
wise direction to enhance the stability of the numerical scheme.

E



- to the diffusion coefficientThis is done by adding 2 v

of the stream wise viscous term where _ is the local stream-

wise velocity vector, and _ is the local length scale of the
control volume in the stream-wise direction:

As shown by Yam [7],the areason thecontrolcellare

definedby thecrossproductofthetwo positionvectorslocated

on each surface. These two position vectors are determined by
linear interpolation between the grid points where the surface
is located. For a control volume with plane surfaces this is a
good method of determining the surface area, however the
resulting surface integral of area is not always equal to zero.
This can lead to truncation error in the governing equations
where surface integrals are evaluated. A typical and an
important example is the pressureforceterminthe momentum

equation. The difficulty can be overcome by correcting the
pressure force term as:

-fJP  -ffP  dA+PH  A
R .q R

Thus any error in the evaluation of the areas is compensated by
the second term and the finite volume equations will accept
uniform solutions.

After the governing equations have been transformed into
finite-difference equations, a numerical scheme must be
employed to solve the system of equations. An iterative
implicit scheme with replacement (Predictor - Corrector -
Corrector) is used in this study. This is variation of the
alternate line implicit method with replacement. A detail
discussion is _hown by Yam [7]. The advantage of using this
type of iteration scheme is that it has a fast convergence rate
compared to other iterative methods [7].

V) Pressure Solver

The governing equations consist of the continuity equation,
three momentum equations, and energy equation with un-
knowns of U, V, W, P and T. The velocity field is obtained
through the momentum equations, and the temperature field is
obtained from the thermal energy equation. However, we do
not have an explicit equation for the pressure field. Thus,
special treatment must be used in order to obtain the pressure
field. The method that was used to obtain pressure for this
study is a variation of the method developed by Chorin [8]. A
detail discussion is shown by Yam [7].

VI) Initial Conditions And Boundary Conditions

Due to the elliptic nature of the governing equations,
boundary conditions must be given at all boundaries.
Moreover, since all variables are a function of both Space and
time, initial conditions for all variables must also be given. For
mass driven internal flow, the mass flow rate is the only known

quantity. The pressure gradient (pressure drop) is a result from
the balancing of the forces on the fluid particles. Thus, velocity
and pressure are unknowns everywhere. For the combined
forced and free convection flow, it is assumed that the duct has

a long straight inlet section such that before the entry of the
heated curved section, the flow is fully developed. Thus the

velocity field is assumed to be parabolic everywhere. The
pressure field is assumed to have a uniform pressure gradient
along the duct system. For the temperature field, it is assumed
that the temperature is uniformed everywhere and is equal to

the inlet temperature.

The boundary conditions for the velocity and the pressure
fields are more complicated. At the surface of the duct, the no-
slip velocity still holds. A zero pressure gradient is appfied at
the surface. The velocity profile at the inlet is also fixed and is
that of the parabolic profile. Hence the velocity correction is
specified to be zero. The pressure, however, is to be
extrapolated from the pressure at first cell next to the inlet.
This will allow the inlet pressure to change in order to satisfy
the balance of momentum at the first control cell. At the exit,

the velocity field is assumed to be fully developed. Thus, the
velocity gradient along a stream line is zero. Again, we
extrapolate the pre_ure for the exit pressure field. For the
temperatureboundaryconditions, the wall temperatureat the
straight section is equal to zero while the temperature at the
curved section is equal to one, The inlet temperature is held
constant with a value of zero. At the exit, the temperature field
is assumed to be fully developed. Thus, the temperature
gradient along a stream line is set to be zero.

As a comparison, a pure forced convection through a 180
degree bend duct with straight ducts attached is included in this
study. However, the inlet straight section of this case is relative
short. It is reasonable to assume that the flow at the inlet is

mainly composed of an inviscid core since the boundary layer
has not yet been established. Thus the initial condition for the
velocity field is assumed to be an inviscid velocity profile with
zero velocity at the wall everywhere. For the temperature, the
initial and boundary conditions are the same as the above case
withtheexceptionthatthestraightsectionisalsoheated.

A summary of initial and boundary conditions for this case
is listed in Table 1.

Table 1

Initial and Boundary Conditions for Forced and Fnm
Convection (Mass Driven) Internal Flow

Velocity

Far Field

Upmeam
Boundary
Conditions

Temperature

T=0

Pressure

Initial V = V(_,_) P = P(_,vl)
Conditions

Body V=0 r
Boundary = Twall
Conditions

¢ = r =o P=Calculated
Fromthe flow
Field.



j--jlDown- O_ = 0 -- = 0
stream OT aT

Boundary
Conditions

5)Discussion Of Rfsullx

For internal flow the mean temperature is dei-med as

jP=Calculatgd ]
from thenowI HTV'"-+dA

field. [ Tmean - _] V* n-)dA

A primary objective of this study is to determine the surface
(normal and shear) strew, surfac.e h_ flUx and _ inmrnal : _'_ : _ :=_:--%:_ .... _: _

flow structure inside a straight-curved duct subject to a
combined forced and free convection. With the gravity vector
parallel to the plane of symmetry of the geometry of this
problem, and with the assumption thaYi_i_TfdW is symmetric in
the cross-section of the duct, only half of the domain needs to
be computed. (Hence symmetrical boundary conditions of all

gradients equal to zero and the velocity vector tangent to the
plane of symmetry are imposed at the plane of symmetry.)

We have placed 15 geometrically stretched (of 11 percent)

grid points in the radial (TI) direction, 19 geometrically

stretched (of 9 percent) grid points in the circumferential (_)

directionand either46 or 6i gridpointsinthes_-wise (_)

direction. By stretching in the radial direction, we have a grid
system that can capture the boundary layer next to the wall.
The stretchingin the circumferentialdirectionallowsus to

obtaina more accuratesecondaryflow in a curved duct. A
typicalexample of the gridsystemused in the curvedduct

problemisshown inFigures2 to5.A dimensionlesstimestep
(At)of0.I isused inthesecalculations.A Prandflnumber of

0.7isusedthroughoutthisstudy.

A) Accuracy

while the local Nusseit Number is defined as

_T

hRo _r

Nu==T'=

and can be viewed as the ratio of the heat flux due to

convection and the heat flux due to conduction. A high Nusselt
number means heat transfer is dominated by convection while

a low N_it number means heat transfer is done mainly by
conduction.

To test the evaluation of the local heat transfer rate; a test
case of fluid with inlet temperature of 1 and cooled wall
temperature of 0 in a straight duct is calculated. The mean
temperatureand the Nusseitnumber are calculatedand the

resultsarethencompared withtheoreticalvalueswithexcellent

agreement.

B) Detail Results

Case I : Re = 59.92, Ra = 2.57x104, Pr -- 0.7

1
We beginthestudywitha curvatureratio ofI-'_'_.9'Reynolds

number of 59.92,Rayleighnumber of 2.57×104and Prandfl

number of0.7.A totalof 19x15×61 gridpointsareusedinthis

s_udy.

=

r

The formulationof the internalflow partof the code is

testedby runningaseriesofsteadystatetestcases.Steadystate

isassumedtobe reachedwhen thedivergenceof thevelocity

fieldisdroppedtomachinezeroand therelativechangeinthe

velocityfieldisintheorderof I0-4.Thisgenerallytakes1200

time steps.The resultingvelocityprofileof the testcase is
compared with the exactsolution.For the mass drivencase

with an inviscidinletvelocitybeingprescribed,theentrance

lengthbeforetheflow becomes fullydevelopedin a straight

duct is calculatedand is compared with experimental

correlations.The resultingpressuredrop,and velocityprofiles

at the fullydevelopedregionare compared with the exact

solutions.The comparisonisgood sincetheerrorsinvelocity
and inpressuredropareintheorderofdiscretizationerror.

Two testcasesofmass drivenflowina 180 degreescurved

duct,curvatureratio(ratioofcurvedductradiusRducttothe

main curvedradiusRcurve)of_ withReynoldsnumber of242

and 900 ate calculated.The resultingspeed contour and

secondaryflow fieldare then compared with the numerical

resultsobtained by Sob and Bcrger [4] with excellent

agreement.A detaildiscussionofthesolutionsand comparison
isshown by Yam [7].

At this Reynolds number, the entire flow field is dominated

by buoyancy affects. The resulting pressure contour at the
plane of symmetry and the pressure contour at the surface of
the duct are shown in Figures 6 and 7. It is clear that the
pressure distribution has taken the form of hydrostatic.

The pressure at the inner wall, at the centerline of the duct
and at the outer wall verses the K-station (where K equals 1 is
at the inlet, while K equals 61 is at the exit) as shown in Figure
8. The reason for plotting the pressure against the K-station is
that there is no obvious physical length scale one can plot the
pressure. The number of the K-station can be viewed as the

transformed length scale _. Thus, this is one way of presenting

combined results in straight and curved sections in a one-
dimensional plot. The unusual reverse of the maximum and
minimum value location at the cross-section of the duct is a

characteristic of hydrostatic pressuredistribution inside a
curvedduct.

The cross flow velocity field is shown by the velocity
vector plot at the symmetry (X-Z) plane (Figure 9). At the
inlet, the velocity profile is parabolic as discussed previously.
As the fluid particles enter the curved section, heat is added to
it. With the combined influence of the buoyancy and inertia



forces,thefluid particles tend to move to the highest portion of
each cross section the duct. This is shown by the maximum
velocity located at the inner bend of the duct as indicated in
Figure 9. In order to satisfy mass balance at each section, those
fluid particles at the outer bend where buoyancy force is
relative weak (when compare to those at the inner bend) have
to flow backwards. This reversed flow at the outer wall travels

upstream of the curved section to the straight section due to the
low inertia of the fluid particles as indicated in Figure 9. The
flow field has this nature until 80 degrees of the bend, when
bothinertiaforceand buoyancy forceactedinphaseto push

thefluidparticlesupwards.The speedcontour(Figure10)at
theplaneofsymmetry clearlyshows thereversedflow region
attheouterbend ofthecurvedinlet.

As the flow continue to develop, the centrifugal and
buoyancy forces act together and continue pushing the fluid
particles downstream where a reversed flow at the inner bend
is then observed. As the flow continues to develop, the
maximum velocity location starts moving towards the outer
bend. As the flow reaches the exit, the buoyancy and
centrifugal forces act out of phase and the maximum velocity
is located near the outer bend. The corresponding surface total
shear stress is shown in Figure 1 I. It is clearly shown that the
maximum surface shear stress is located at the inner bend of

the curved entrance region due to the high velocity gradient at
that location. The mInimum shear stress region (with an
opposite sign due to the reversed flow) is located at the inner
bend immediately downstream of the maximum region. The
speed contour at the 80 degree cross section where the reversed
flow region exists at the outer bend is shown in Figure 12. A
secondary flow is also observed at the exit of the duct as

indicated by the velocity vector plot at the exit plane as shown
in Figure 13. The center of the secondary flow is located at the
top half of the duct due to the strong buoyancy force.

From the temperaturecontourat the symmetry plane

(Figure14),we can see thatthermalboundary layerformed

rapidlyattheinnerbend ofthecurvedsectionand isconfined

toa thinlayer.At theouterwall,thethermalboundarylayer
flows backwards to the straightsectionbeforeconvecting

downstream.This isdue tothe reversedflow (shown by the

velocityvectorplotatthesymmetry planeinFigure9),where

fluidparticlesthathave been heatedup by hot curved wall

haveconvectedbackwardstothestraightinletsection.

The temperaturecontour at the exit plane is also shown in
Figure 15. We can see that the temperature gradient at the
outer wall is at a maximum while the temperature gradient at
the inner is at a minimum. Since temperature can he view as a
passive scalar, the temperature contour can provided us a view
of the flow field. Comparison of the temperature contour at the
exit (Figure 15) with the secondary flow smoke pattern (Figure
16) obtained by Cheng and Yuen [8] where the Reynolds
number, Rayleigh number and curvature ratio is identical to
this case is then made.

From Figure 16, we can see that the buoyancy force is pushing
all the smoke towards the outer bend and is confined to the top
30 percent of the cross-sectional area. Since at this Reynolds
number, the centrifugal force is relative weak, the flow field is
dominated by the buoyancy force. Moreover the secondary

flow is not strong enough to push the smoke from the outer
wall back towards the inner wall. This is qualitatively

comparable to the temperature contour (Figure 15) where the
temperature contour lines done not indicated a downward flow
motion next to the wall. (The detection of downward motion is

detacted by the curvature of the contour lines and will become
clear when a higher Reynolds number case is discussed in a
later section)

The localNusseltnumber attheinnerbend,atthetopofthe
duct,and atthe outerbend arecalculatedand are shown in

Figure 17. From thislocalNusseltnumber plot,the heat
transferrateattheinnerbend of thecurvedinletsectionhas

increasedfrom a Nusseltnumber of6.9to8.6(wheretheshear

stressisat a maximum) thendecreasedback to 0.7.This is

causedby the thermalboundary layerbeingpressedintothe
innerwallby thebuoyancy force.AS thisboundarylayerlifts

offfrom theinnerwall,theresultingheattransferratedropsto
zero.At theouterwall,thereverseof thisaffectisobserved.

The Nusseltnumber remainsclosedtozeroatthebeginningof
thecurvedsectionwhere reversedflowisobserved.At about

80 degreesinto_ bend, the Nusseltnumber startedto

increaseup to6.8(at120 degrees) and remainsconstant.At
the centerof the duct,the nusseltnumber takeson a more

convectionalform of havinga maximum valueof 7.0 atthe

entranceoftheheatedsectionand thecontinuestodrop toa
constantvalueof1.9.Thisshows thattheheattransferrateina

straight-curvedductishigherthanthatofa straightductwhere

theNusseltnumber fora fullydevelopedflowbaseon radius
has a value of 1.8.

The mean duct temperature is shown in Figure 18. The
mean temperature increases from 0 at the beginning of the duct
(at the straight section) and drops back down to zero at the
beginning of the heated section. This is due to the reversed
flow of the heated fluid flow at the inlet section. AS the flow

continues to develop, the mean temperature continues to
increase to0.98 at the ductexit.

Case H : Re ffi246.69, Ra ffi 2.57x104, Pr ffi0.7

The second case presented here is for a Reynolds number of

246.69, Rayleigh number of 2.57x104 and Prandtl number of

0.7, The curvature ratio and grid density are the same as Case
L

At this Reynolds number, the buoyancy affect dominates
the region next to the inner wall at the last half or the duct
while the centrifugal force influences the region next to the
outer wall of the entire duct system. This is shown by the
pressure contour at the plane of symmetry in Figure 19. We
can see that the pressure contour has taken the form of
hydrostatic (parallel line with respect to the horizon) at the
inner wall while centrifugal force (contour lines curved
upward) is evident at the outer wall. The pressure at the inner
wall, at the center line of the duct and at the outer wall are also

presented as the function along the duct in Figure 20. The
unusual reverse of the maximum and minimum value which is

a characteristic of hydrostatic pressure distribution inside a
curved duct occurs near the exit of the duct while the



centrifugalforcedominatedpressuredistributionisobservedat
thefirsthalfofthecurvedsection.

The cross flow field is shown by the velocity vector plot at
the symmetry (X-Z) plane (Figure 21). As the fluid particles
enterthecurvedsection,heat is addedtoit.With thecombined
influence of the buoyancy_d inertia forces,: the fluid particles

tend to move to the nighest portion of each cross section the
duct. This is shown by the maximum velocity located at the
inner bend of the duct as indicated in Figure 21. In order to
satisfy mass balance at each section, those fluid particles at the
outer bend where buoyancy force is relative weak (when
compare to those at the inner bend) have to flow backwards.
However, unlike Case I, the incoming fluid has enough inertia
such that reversed flow does not occur at the smdght inlet
section.The reversedflow attheouterwallcontinuesup to60

degreesofthebend.At the5.5degreelocation,bothinertiaand

buoyancy forcehave acceleratedthe fluidparticlesinphase

such thata reversedflow atinnerbendsisobserved.(Hencea
reversedflow at both the outerand innerbends isdetected

from 55 to 60 degrees).Moreover, the maximum velocity
locationhas shiftedfrom theregionnexttotheinnerbend to

the regionnexttothe outerbend.The combined forcedand

freeconvectionisso strongthatthereversedflow attheinner

bend continuesup to150 degreesofthecurvedsection.As the

flow continuesto develop,the maximum velocitylocation
moves towardstheouterbend.As theflowreachestheexit,the

buoyancy and centrifugalforcesact out of phase and the
maximum velocityislocatednearthe outerbend due to the

centrifugalforce.Speedcontoursattheplaneofsymmetry are

alsoshown inFigure22.The reversedflowatthebeginningof
theouterbend and atthe mid-sectionof the curvedduct is

clearlyshown.The correspondedsurfacetotalshearstressis
shown in Figure23. The maximum surfaceshearstressis

locatedattheouterbend ofthecurvedsectiondue tothenigh

velocitygradient.The minimum shearstressregions(withan
oppositesigndue tothereversedflow)arelocatedattheouter

bend atthe beginningof thecurvedsectionand atthe inner
bendofthelasthalfsection.

exit plane is also shown in Figure 29. We can see that the
temperature gradient at the outer wall is at maximum while the
temperaturegradient a_th6inner is at m_mum, l:_ore,

the maximum temperature region is closer to the outer bend
when compare to the lower Reynolds number case (Figure 15)
due to the nigher centrifugal force.

From the secondary flow pattern (Figure 30) obtained by

Cheng and Yuen [8] with the same Reynolds number, Rayleigh
number, Prandtl number and curvatureratio,=we= _ see
the smoke at the outer bend has been convected towards the
inner bend by the stronger secondary flow. The smoke has
occupied 70 percent of the cross-sectional area. This is

qualitative comparable to the temperature contour (Figure 29)
where the temperature contour lines shows a concave down
shape which indicated that it is being bend by the downward
flow at the duct wall region.

From the local Nusselt number plot (Figure 31), the heat
transfer rate at the inner bend of the curved inlet section has a
Nt_sseat_f_n-_f 8£and then-con_rbp_a'iow_ue of

0.183 where the thermal boundary layer have rift off the inner

bend (K=31). The Nusselt number there increases slightly and
has a value of 0.45 as the flow exits the duct. At the0uter wall,
the Nusselt number has a maximum of 3.12 at the beginning of
the heated section and then drops back to have a low value of
0.2. This is the location where the thermal boundary layer has
lifted off from the outer wall due to the buoyancy effect. At
K=25, the Nusselt number started to increase rapidly to a high
value of 13.5. This is due to the re.attachment of the thermal

boundary layer being pushed to the outer wall by the combined
effect of buoyancy and centrifugal forces.

The mean temperature along the duct is shown in Figure 32.
The mean temperature has increased from 0 to 0.82 at the duct
exit. This shows that even though the Nusselt number reached

an asymptotic value, the flow is not thermally fully developed.

Case HI : Re = 242, Pal=0, Pr = 0.7

=

A secondary flow is observed at the 75 degrees station and
is shown in Figure 24. The speed contour at the location where
the reversed flow at the inner bend is shown in Figure 25. A
secondary flow is observed at the exit of the duct as indicated

by the velocity vector plot at the exit plane as shown in Figure
26. We can see that the center of the secondary flow is located
at the mid section and the strength of the secondary flow is
strongerthan thatof caseone due tothe strongcentrifugal

effecL The speed contour at the exit where the nigh velocity
gradient is located next to the outer bend is shown in Figure
27.

For comparison, a similar forced convection case without
I

body force is present here. A curvature ratio of _. Reynolds

number of 242, Prandtl number of 0.7 is used in this case. A

total of 21x15x46 grid points are used in this study. The grids
in the straight duct section and in the stream-wise direction are
expanded geometrically by 10 percent. The resulting grid
system is shown in Figures 3, 4 and 5. The flow is driven by an
imposed mass flow rate thus the only known quantity is the
velocity field at the inlet. The initial and boundary conditions
used for this case have already been discussed in the initial and
boundary conditions section.

From the temperature contour at the symmetry plane
(Figure 28). we can see that thermal boundary layer formed
rapidly at the inner bend and is confined to a thin layer while
the thermal boundary layer at the outer bend grows rapidly due
to the buoyancy force. As the duct turned, the combined

buoyancy and centrifugal forces have lifted the thermal
boundary layer away from the inner bend and pushed it against
the outer bend where the thermal boundary layer formed
tightly against the outerwall. The temperature contour at the

The calculated pressure distribution is presented by
plotting, (I) the pressure at the inner bend, (2) the pressure at
the center line of the duct, and (3) the pressure at the outer
bend verses the K-station as shown in Figure 33. The resulting
pressure contour at the plane of symmetry and the pressure
contour at the surface of the duct are also shown in Figures 34
and 35. From the pressure profile. Figure33. the inlet pressure
at the center is slightly lower than the pressure at the walL This
is caused by the inlet flow still being mainly composed of an



inviscidcore with a boundary layer starting to develop. As the
boundary layer grows, the displacement thickness also grows.
This increase of the displacement accelerates the main inviscid

core in order to maintain the mass balance. By Bernoulli's law,
as the velocity increases, the pressure decreases. Thus the
pressure is lower at the center. As the fluid enters the curved
section, the pressure at the outer bend is higher than the
pressure at the inner bend. This is due to the centrifugal force
exerted at the duct wall by the fluid particles. Note that at the
outer wall of the entrance region of the curved section, the
pressure gradient is almost zero. Although there is a slight
pressure oscillation at the exit of the curved section, this is due
to the lack of resolution of grid points in the stream-wise
direction. This problem can be over come by adding more
grids to the stream-wise direction.

From the surface pressure contours, Figure 34, there is a
pressure drop along the straight section of the duct, however,
the pressure is almost uniform across the duct. We can also see
that from Figure 34, not only is there a pressure difference
between the inlet and the exit, but also a pressure differenoe
between the inner bend and the outer bend due to the

centrifugal force acting by the fluid. At the outer bend of the
entrance of the curved section there is a region where the
pressure is uniform and it is shown in both pressure contours at
the plane of symmetry, Figure 34, and at the surface of the
bend duct, Figure 35. This is due to the increase of the pressu_
by the centrifugal force acting at the curved section. Unlike the
combined forced and free convection, here the pressure at the
outer bend remains higher then the pressure at the inner bend
of the same cross section throughout the curved section.

The velocity profile for this case is significantly different
than that of case II. Unlike ease 1I where the maximum

velocity location started off at the inner bend and later on
moved to the outer bend, the maximum velocity location
started off at the region next to the outer bend and remained at

the outer bend. A detail description of the flow development is
discussed as follows.

The velocity profile (Figure 36) at the inlet is an inviscid
one which is explicitly specified. As the flow enters the

straight inlet section, the boundary layer started to grow,
however due to the shortness of the straight section, the flow is
still composed mainly of an inviscid core. As the fluid particles
enter the curved section, the velocity prot'de tends to build up
at the outer walL This is due to the particles coming from the
straight section still want to go straight by their momentum.
However, because of the existence of the sofid curved wall, the
fluid particles have no choice but to change their course to
follow the curvature of the duct. This lead to a larger buildup
of the fluid particles at the outer Wall. The existence of an
inviscid core (where velocity shows a flat plateau) can Still be
observed up to the 45 degrees station of the curved section.
The developing region exists to about 110 degrees until the
flow in the curved section becomes fully developed. (Further
study by Yam [7] has indicated the existent of the inviscid does

not have major influence in the heat transfer part of the
problem). At the fully developed region, the velocity profile
has the maximum located closed to the outer wall. The speed
contour at 90 degrees section of the curved duct is shown in
Figure 37. A secondary flow is also observed and is shown by

the secondary flow velocity vector located at the 90 degrees
section in Figure 38. As the fluid exits the curved section and
enters the straight section, the maximum velocity is still
located toward the outer wall. The speed contours at the exit

plane is shown in Figure 39. The cross velocity vector at the
exit is also shown in Figure 40. The secondary motion is still
clearly defined with the center of the secondary flow located at
the lower region of the cross section. Without the influence of
the buoyancy force, the secondary flow is strong enough to
move some of the fluid particles towards the inner bend as
indicated by the concave downward shape of the speed contour
line.(Without body force, the temperaturecontoursare the

same as the speed contours).

The total surface shear stress contour is shown in Figure 41.
There is a large area of minimum shear stress located at the
inner bend with a large area of maximum shear stress located
at the outer bend. This is obvious from the velocity vector plot
(Figure 36), we can see that the velocity gradient is higher at
the outer bend then at the inner bend. At about 80 degrees from
the inner bend, a small region of maximum change in the shear

mess is observed in Figure 41. From the secondary flow
velocity vector plots (Figure 40), we can see that the center of
the secondary flow and the maximum secondary velocity
gradient are located at about 80 degrees from the inner bend.
This indicates that the region of maximum changes in shear
stress at the surface of a curved duct has the same angle that is
between the center of the secondary flow and the plane of
symmetry.

From the temperaturecontour at the symmetry plane

(Figure42),we can seethata thermalboundarylayerformed

rapidlyattheouterbend and isconfinedtoa thinlayer.At the

inner wall, the thermal boundary layer formed at the straight
section continues to grow at the curved section and eventually
disappears.Unlike thecombined forcedand freeconvection

case. the thermal boundary layer at the outer bend never lifts
off the duct wall. The thermal boundary layer (Figure 42) at
the inner wall start growing rapidly as it enters the curved
section while for the combined forced and free convection case

(Figure 28), the separation of the thermal boundary layer has
delay up to 55 degrees into the curved section.

The mean temperature and the local Nusselt number at the
inner bend, at the top of the duet, and at the outer bend are
shown in Figures 43 and 44. Unlike the combined forced and
free convection cases where the Nusselt number at the inner

bend In-st has a high value and then at outer bend has a high
value(Figure17,Figure31),theforcedconvectioncasehas a

higherNusseltnumber attheouterbend thanwhen compared
tothe innerbend atalllocation(Figure43).From the local

Nus_It number plot(Figure43),theheattransferrateatthe

inletsectionisdecreasinguniformlyacrosstheduct.As the
flow entersthe curvedsection,the heat transferrateat the
outerbend continuestoincreasefrom a Nusseltnumber of2.7

to9.8towardstheend ofthecurvedsectionwhiletheNusselt

number atthe innerbend continuesto _decreaseto a steady
valueof0.6.Thisshows thattheheattramferrateattheouter

bend is5.4 timeshigherthanthatofa straightduct(Nusselt
number of 1.8).At theinnerbend,however,theheattransfer

rateisabout3 timeslowerthanthatofa straightduct.The heat

transfer is about 16 times higher at the outer bend when



compared to the heat transfer at the inner bend. This is

reasonable because the fluid particles are convected into the
wall at a much higher rate at the outer bend then that at the
inner bend. The Overall heat transfer rate in a curved duct is

also higher than that of a straight duct. This is due to the
secondary fluid motion that enhances the heat transfer. As the
fluid leaves the curved section to enter the straight section, the
Nusselt number at inner bend and at center start to decrease
while the Nusselt number at the inner bend starts to increase. If

the straight duct section at the exit is long enough, one can
expect that the Nusselt number will approach the value of the
straight duct (i.e. Nusselt number of 1.8). The resulting surface
heat flux contour (Figure 45) shows that the region at the inner
bend has a lower heat flux value than the region at the outer
bend.

6) Conclusion

Solutions for the combined free and forced convection in a

curved duct are obtained by solving the low Mach number

outer bend thus lead to a high Nus,selt number at the
outer bend at the last half of the curved section.

When comparing the combined forced and free convection
results with the forced convection results, we notice that: =_:

(1) The maximum velocity location for the forced
convection is next to the outer bend due to the

centrifugal force in the entire flow field.
(2) There is no reversed fl0w exist in the entire flow
field for the forced convection.

(3) The secondary flow is stronger for the forced
convection case when compared to the combined forced
and free convectioncase due to the lack of the

buoyancy force.
(4) Heat transferrate at the outerbend is always

strongerthanthatattheinnerbend forthepureforced

convectioncase.Thisisdue tothecentrifugalforcethat
p_es theihermalboundarylayerClosedto theouter
wall.
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Figure 1
Schematic Diagram of Experimental
Apparatus by Cheung and Yuen [8]

Figure 2

Grid System For The Straight-Bend Duct
(X-Z Plane)

Figure 3
Internal Grid System

Figure 4
Grid System For The 180 Degrees Bend

Duct With Straight Ducts Attached

Figure 5

Surface Grid For The 180 Degrees Bend
Curved Duct With Straight Ducts Attached

Pressure Contour At The Plane Of Symmetry
Re = 59.92, Ra = 2.57e4
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Figure 7
Surface Pressure Contour

Re = 59.92, Ra = 2.57e4
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Figure 8

Pressure Along The Duct
Re = 59.92, Ra = 2.57e4



Figure 9
Velocity Vector At The Plane Of Symmetry

Re = 59.92, Ra =2.57e4

Figure 10
Speed Contour At The Plance Of Symmetry

Re ---59.92, Ra -- 2.57e4

Figure I 1
Total Surface Stresses

Re = 59.92, Ra = 2.57e4
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Figure 12
Speed Contour At The 80 Degrees Location
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Figure13

SecondaryFlow At The Exit
Re = 5992, Ra --2,57e4

Figure 14

Temperature Contour At The Plane Of
Symmetry
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Figure 15
Temperature At The Exit
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Figure 16
Smoke Pattern At The Exit Obtained By

Cheng And Yuen [8]
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Figure 17
Nusselt Number Along The Duct
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Figure 18

Mean Temperature Along The Duct
Re = 59.92. Ra = 2.57e4

Figure 19

Pressure At The Plane Of Symmetry
Re = 246.69, Ra = 2.57e4
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Figure 20

Pressure Along The Duct
Re = 246.69, Ra = 2.57e,4

Figure 21

Velocity Vector At The Plane Of Symmetry
Re = 246.69, Ra = 2.57e4

Figure 22

Speed Contour At the Plane of Symmetry
Re = 246.69, Ra = 2.57e4

Figure 23
Total Surface Stresses

Re = 246.69, Ra = 2.57e4

Figure 24
Secondary Flow At The 75 Degrees Location



Figure25

SpeedContourAt the75 DegreesLocation

Figure 26

Secondary Flow At The Exit

Figure 27

Speed Contour At The Exit

Figure 28
Temperature Contour At The Plane Of

Symmetry
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Figure 29
Temperature Contour At The Exit
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Figure 30
Smoke Patent At The Exit Obtained By

Cheng And Yuen [8]
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Local Nusselt Number Along The Duct
Re = 246.69, Ra = 2.57e4
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Mean Temperature Along The Duct
Re = 246.69,Ra = 2.57e4
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Pressure Along The Duct
Re = 242, Ra =0.0

Pressure At The Plane Of Symmetry
Re = 242, Ra _0.0
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Figure 35
Surface Pressure Contour

Re = 242, Ra =0.0

Figure 36
Velocity Vector At The Plane Of Symmetry

Re = 242, Ra =0.0

Figure 37
Speed Contour At the 90 Degrees Location
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Secondary Flow At The 90 Degrees Location

Figure 39
Speed Contour At The Exit
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Figure 40
SecondaryFlow At theExit
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Figure 45
Surface Heat Flux
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Abstract

A defect approach coupled with matched asymptotic ex-
pansions isused toderivea new setofboundary layerequa-

tions.This method ensuresa smooth matchingofthebound-

ary layerwith the inviscidsolution. These equationsare

solvedtocalculateboundary layersoverhypersonicbluntbod-

ies,involvingtheentropygradienteffect.Systematiccompar-

isonsaremade forboth axisymmetricand planeflowsinsev-

erM caseswith differentMach and Reynolds numbers. After

a briefsurveyofthe entropylayercharacteristics,the defect

boundary layerresultsarecompared with standardboundary

layerand fullNavier-Stokessolutions.The entropygradient

effectsare found to be more importantin the axisymrnetric

casethan intheplaneone.The walltemperaturehas a great

influenceon theresultsthroughthedisplacementeffect.Good

predictionscan be obtainedwith the defectapproachover a

coldwallinthe noseregion,with a firstordersolution.How-

ever, the defect approach gives less accurate results far from

the nose on axisymmetric bodies because of the thinning of
the entropy layer.

Introduction

A bluntbody in hypersonicflow ispreceded by a bow

shockwave,detachedinfrontofthenose.This strongcurved

shock wave inducesan entropygradientin the shock layer.

For an inviscidflow,the entropygradientisrelatedto the

vorticitythroughCrocco equation:

cu- l̂e = -gra--dH,+Tgra--ds

Therefore,velocityand temperaturegradientsalsoexistin

an inviscidshocklayer.The standardboundary layertheory

of Prandtl cannot take intoaccountnormal gradientsout-

sideofthe boundary layer.Van Dyke proposed an enlarged

theorycalledhigher-orderboundary layertheory based on

matched asymptoticexpansionsforhigh Reynolds numbers

[11,12].Two expansionscorrespondingto differentapproxi-
mationsofthe Navier-Stokessolutionsarebuilt.One ofthem

called outer expansion is valid far from the wall, where the

viscous effects are negligible. The other one called inner ex-
pansion describes the boundary layer where the viscous effects

are dominating. The Prandtl boundary layer equations then
represent the first term of an expansion in powers of a small
parameter. The external flow normal gradients are accounted

for in the second order term, which is a small perturbation
of the first order solution. Several other second order effects,

Like the wall curvature, the displacement or the rarefied gas
effects are brought into evidence. The main advantage of this
systematic method is to give not only the equations but also
the matching conditions between the different zones.

For hypersonic reentry flows, the Reynolds number is of-
ten moderate at high altitudes, because of the low density of
air. The boundary layers are thus thick and can be of the

same order of magnitude as the entropy layer, and the invis-
cid flow quantities can undergo important variations between

the wall and the edge of the boundary layer. Because of the
hypothesis of Reynolds number tending towards infinity, the
boundary layer is assumed to be very thin in Van Dyke's the-

ory and the inviscid flow gradients are represented only by
their wall value. So the second order expansion cannot ensure

a good matching of the boundary layer with the inviscid flow
ifthe inviscidprofilesare not linear,and the influenceofthe

externalvorticityon the skinfrictionand the wallheat flux

isnot correctlyestimated.

Defectapproach

Decomposition
To ensurea smooth matching at any orderwhatever the ex-

ternalflow,a defectapproach has been used,coupled with

asymptoticexpansions[3].Inthe boundary layerregion,the

variablesare no longerthe physicalvariables,but the dif-

ferenceof them with the externalsolution(Le Balleur191).

We considera steadytwo-dimensionalflowofidealgas. The

variablesp,a, v, p and T stand forthe density,tangential

and normal component of the velocity,pressureand temper-

ature.The equationsare writtenin a system oforthogonal

curvilinearcoordinates(_,r/)where _ representsthe curvilin-

earabscissaalongthe body and r]isthe distancetothe wall.

Allthevariablesaremade dimensionlessby referencingthem

to the upstream valuesp,,_and U_, the nose radiusR0 and

To = U_/Cp. So we write:

P =PE +PD

U :UE+_ D

P =PE +PD

T = TE + TD

where the subscript E stands for the external variables and

the defect variables are labelled D. The term vE(_,O) has
been added to keep the condition VD(_,O) = 0 at the wall
whatever the value of vz.

Expansions are then written using the same small param-
eter ¢ as Van Dyke :

i p.W=Ro
= Re=



The external functions depends on the coordinates (_, 7). The

outer expansions read :

_(_,,)

_s(_, _)

p_(_,,)

= u,(_,_) + eu_(_,_) + ---

V= ¼((,7) -+ _ _((,7) + "-

= P_(_,7)+ _P_((,7)+ ---

= R,(_,7) + cR_((,_) + :-

= T1((,7) + _T2(_,7) + ""

In the inner region, a stretched normal coordinate _/= 7/¢ is

used for the defect variables :

_o(_,7) = _,((,q) + _,({,#) + "

"D(_,7) = _,(_,#) + _%(L#) + "

pD((,7) =plff,,_) + c_(_,,_) + ,,-

pD(_,,7)= pl(_, _) + _p_((,_) + "'"

TD(_,rl) = h(_,_l) + ¢t2(_,_t) + ""

The expansion for v must be Shifted to avoid the degeneracy

of the continuity equation. These expansions are then brought

into the Navier-Stokes equations, and terms of like power of

¢ are equated.

Equations
In the outer region, the defect variables are null and the equa-

tions for the outer flow are exactly the same as for Van Dyke's

theory, i.e. Euler equations. Concerning the inner region, one

must first bring the above expansions into the Navier-Stokes

equations, then substract the external equations, and at last

equate same powers of ¢. For practical convenience, the inner

equations can then be rewritten in outer coordinates, using 7

instead of _, and replacing _ and fi= by :

_(_,7) = _o,(_,_) _(_,7) = _o_((,_)

Then the following first-order equations are obtained :

- continuity :

o_

- _-momentum :

(n,+ _)(u_+ "')-T( + [p,u,+ (n,+ W
. Oul Op_ 1 a [ cgu_'_

- 7-momentum :

o_
- energy :

OTI

(R, + _)(U, + _,,)_ + [_,_U_+ (_, +

o,,,-t-(R1 + P_ )( V: v'l a_ = u'_T__ + (u_ + u,)
+

+N PrRe /_ +_ekN/

- state :
r

"r- t i.lT _+ (_ _ ._)t_;
P_ : 3'

The symbol r represents the distance from the wall to the

symmetry axis, with j = 0 for plane and j = 1 for axisym-

metric bodies. As in Prandtl equations, the wall curvature

appear in the first-order equations only through the trans-

verse curvature radius in the continuity equation. The second-

order equations are small-perturbations of the above ones plus

source terms due to curvature effects, like in Van Dyke theory.

Matchin_ conditions

Each expansion must satisfy the boundary conditions corre-

sponding to its own validity domain. The upstream conditions

are to be applied to the outer expansion and the wall condi-

tions to the inner one. The missing conditions are obtained

by matching the inner and outer expansions. At the edge bf

the boundary layer, we can write :

--_Zt E

I/ --_ _]E

P "--_ PZ

P -_Pm

T -. T_

and so for the defect variables :

UD --* O

_D -_ _((, O)

PD --*0

PD -*0

To -. O

Thus at first order :

lim u_ = 0
¢t--*_

y,(_, 0) = 0

lim p_ = 0
¢t--._

lim t_ = 0
o--*_

lim p_ = 0
0--*¢¢

The conditions on p, p and T are not independant since they

are linked through the state equation. The condition on v is

not a boundary condition for the inner expansion but it gives

the wall condition for the outer flow.

The wall conditions for the inner flow are :

hence :

u = U: + u_ + _(U: + u_) = 0

T:T_+t,+e(T:+t:) =T,,

,_ff,o)= -u_(_,o)

,,,(6,o)= o

t,(6,o)= T.- T,(_,0)

=

m=



Discussion

Thanks to the small perturbation approach, the calculations

of external flow and boundary layer are uncoupled and can

be performed separately provided that a specified sequence

is respected. First order external problem must be solved

first, then first order internal, second order external, and so

on. The defect boundary layer equations are parabolic and

can be solved by space marching at a very low cost, like the

standard Prandtl equations.

The conditions at the edge of the boundary layer ensure

a smooth merging of the boundary layer into the inviscid flow

whatever the inviscid profiles. From a theoretical point of

view, it can be shown that the defect expansions are consistent

with Van Dyke's ones by the fact that at a given order they

differ only by terms which are higher-order in Van Dyke's

theory.

Using the above conditions, the first order 7?-momentum

equation reduces to

Pl =0

So, the pressure in the first-order boundary layer is every-

where equal to the local inviscld flow pressure, instead of its

wall value like in Van Dyke's theory.

Applications

To experiment the defect approach, several cases have been

selected for a blunt body in a hypersonic flow of ideal gas.

The general shape of the body is a plane or axisymmetric

hyperbol0id , defined by the nose radius and the angle of the

asymptotes, at zero degree incidence. The numerical data are

given by Shinn, Moss and Simrnonds [I0]for a hyperboloid

equivalent to the windward symmetry lineof the U.S. space

shuttle. Two points of the reentry trajectory of the STS-2

flightare considered here :

Reentry trajectory- Flight.S.TS-2

Mach M_

time (s)

altitude (kin)

nose radius Ro (m)

asymptotes half-angle (°)

pressure p_ (Pa)

temperature T_ (K)

velocityU® (m/s)

density p.. (kg/m s)

reference temperature To (K)

Reynolds number Re = p_U_P_
_(To)

small parameter ¢ = Re -1/2

p®U_Ro
Reynolds number Re= =

26.6

250

85.74

1.322

41.7

0.3634

199

7530

6.35 I0 -s

56321

183.55

0.074

4792

23.4

650

71.29

1.253

40.2

4.0165

205

6730

6.80 I0 -s

44900

1865.65

0.023

42374

The Prandtl number is assumed to be constant and equal

to 0.725. The ratio of specificheats -y is 1.4. The wall tem-

perature is fixed and equal to 1500 K. The viscositylaw is

Sutherland's. No comparison with experimental data ispos-

siblesincethe realgas effectsare not yet included. So Navier-

Stokes solutions[8]have been taken as reference,to compare

the two Euler + boundary layer methods. Euler calculations

are made with a code from ONERA [14]. Standard bound-

ary layer solutions are obtained using a program developed

in DERAT [2]. Only first-order boundary layer are presented

here since second-order outer flow solutions are not yet avail-

able. Several second-order calculations using Van Dyke's the-

ory have been made on a hypersonic blunt body :1, 4, 5, 6, 7].

Axisymmetric hyperboloid

Past a hyperboloid, the shock wave curvature decrease lastly

and the entropy fieldtends to be uniform, except for the

streamlines near the wail, which crossed the strongly curved

shock wave at the nose. In this case, the entropy layer is

characterized by a non-zero normal gradient at the wailand

a decreasing thickness towards the rear, since the mass-flow

isconstant in the entropy layer and the circumference of the

body increases(fig.I left).The entropy values at the wall

and at the edge of the entropy layerremain constant because

the wall isa streamline and outside of the entropy layer the

flow isisentropic.So the normal entropy gradient at the wall

deeply increasesdownstream. The shock layeristhinner than

in the plane case. Far from the nose, the flow is similar to

a flow past a sharp cone except in the entropy layer,whose

aspect isquite similarto a viscous boundary layer (fig.2).

Boundary layerprofilesare displayed on figures4 to 7 for

the Mach 23.4 case. Longitudinal velocityprofilesare plotted

on figure4 at a distance of nine nose radius from the stagna-

tion point. One can see on thisfigurethe important velocity

gradient at the wall in the inviscidflow. This gradient dimin-

ishesdistinctlybetween the wall and the boundary layeredge.

So even with a second-order expansion, Van Dyke's method

could not give a good matching, since it considers only the

wall value of the gradient. In thiscase, itwould widely over-

estimate the skin friction (Adams [1]). Due to the very low

wall temperature compared to the inviscid flow one, the dis-

placement effect is quasi-null and the Navier-Stokes solution

recasts exactly the inviscid profile in the outer region. In this

case, the agreement is quite good with the first-order defect

boundary layer. A composite profile has been plotted also,

using the additive composite expansion (Van Dyke [13]) con-

structed with the first order inner and outer expansions. It

gives good results for the longitudinal velocity, slightly differ-

ent of the defect ones.

The corresponding profiles for the temperature are shown

on figure 5. The defect profile is in rather good agreement

with the Navier-Stokes solution, but in this case the compos-

ite expansion written with Van Dyke's first order solutions

gives very bad results and does not improve the inner solu-

tion. This is due to the negative slope at the wall for the

inviscid temperature. Figures 6 and 7 show the velocity and

temperature profiles at twenty-one nose radius. The growing

boundary layer has overlapped a larger part of the entropy

layer. Because of the constant total enthalpy, the positive

velocity gradient at the walt induces a negative temperature

gradient. In spite of this, the wall heat flux is increased by

the vorticity, as well as the skin friction, as can be seen on the

figures 8 and 9. But the increase is far more important for the

wall friction than for the flux. The defect approach underes-

timatel slightly these quantities but gives better predictions

than the standard boundary layer.
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Figures 10 and 11 show the velocity and temperature pro-

files with an arbitrary temperature of ten times the temper-
ature of the preceding case. The displacement effect is then
faxmore importantand itisobviouson thesefiguresthatthe
Navier-Stokessolutionisshiftedfrom the Euler solutionin

the outerzone. So the first-orderboundary layermethods

givepoor resultsand a second-ordercalculationseems to be

necessary.
The velocityand temperatureprofiles atnine noseradius

the slope at the wall of the velocity profile. But no Navier-

Stokes solution is yet available on such a large domain.
The corresponding skin friction and wall heat flux are

shown on figures 16 and 17. As forecast from the velocity
profiles, the defect approach improves greatly the standard
boundary layer result, but widely overestimates the skin fric-

tion on the rear of the body. The predictions concerning the
wall heat flux seem to be more reliable.

abscissain the Much 26.6 caseare presentedon figures12 Plane hyperbola

and 13. Because ofthe lowerdensity,the Reynolds number

issmalland the boundary layerisabout twiceasthickas in

the Much 23.4 case. So a largepartof the entropylayeris

overlappedby the boundary layer.The inviscidvelocityand

temperaturegradientsat the edge ofthe boundary layerare

farweaker than theirwallvalues.Due tothehigh valueofthe

expansionparametere,the secondordereffectsaremore im-

portantand a slightdisplacementeffectisvisiblebetween the

Eulerand Navier-Stokesprofilesoutsidethe boundary layer.

The agreement betweenthe Navier-Stokesand defectprofiles

israthergood, but the shear at the wall isa bit too high

forthe laterone. Note that becauseofthe negativeinviscid

temperaturegradientat the wall,the Van Dyke'scomposite

expansiongivesagainpoor resultson the temperatureprofile.

Figures14 and 15 show the same quantitiesat twenty-

one noseradiusfrom thenose.The entropylayerisnow com-

pletelyincludedintothe boundary layer,and the gradients

inthe entropylayerbecome higherthan thoseofthe viscous

boundary layer.So the hypothesisor"neglectingthe viscous
effectsinthe externalflowdoes not hold any longerand the

defectboundary layerprobablygivesoverestimatedvaluesfor

Let usnow considera planehyperbolainthesame conditions

ofhypersonicflows.On figurel-rightare displayedthe en-

tropylevelsinthe inviscidshock layer.The main difference

with the a0dsymmetriccaseisthat now the entropygradient

isnullat the wall(Van Dyke [12]).Figure3 shows entropy

profileacrossthe shocklayer•The entropygradientlayeris
thus locatedat a shortdistanceabove the wall. So the ve-

locityand temperaturegradientsinthe inviscidflowarenull

atthewallaswell,and theirinfluencewillbe significantonly

witha verythickboundary layer.Moreover,fardownstream,

theflowcan be assimilatedtoa parallelflowand theentropy

layer'sthicknessremainsconstantwhereasinthe axisyrnmet-

riccasetheentropylayergetsthinnertowardsthe rearpartof
thebody. Thus the entropygradientremainsbounded. Since

itisnullatthewall,itsinfluenceon the skinfrictionand the

heat fluxwillnow be farlessimportant.

On figures18 and 19areplottedthevelocitymad temper-

atureprofileson the Much 23.4hyperbolaatninenose radius

abscissa.The inviscidgradientsarehardlyvisibleoutsidethe

boundary layerand allthe methods givethe same results.

When the Reynolds number islower,the matching ofthe
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boundary layer with the inviscid flow takes place in the gra-

dient region, as can be seen on the figures 20 and 21 for the
case Mach 26.6 . The defect method gives a good matching

and a correct agreement with Navier-Stokes solutions, but the
two boundary layer methods give similar results near the wall.

Thus no significant difference is visible on the skin friction and
the wall heat flux shown on figures 22 and 23.

Conclusion

Several boundary layer calculations have been performed on
various hypersonic bodies, including plane or axisymmetric

shapes. The behaviour of the solutions far from the stag-
nation point has been particularly investigated. The different

cases presented here showed both the interest and the limits of
boundary layer methods to compute hypersonic flows. More-
over, the importance of taking into account the second or-
der effects when calculating boundary layers at low Reynolds

numbers has been brought into evidence. The most important
of them are the entropy gradient effect and the displacement
effect in the considered cases. They can deeply modify the

wall quantities such as the skin friction or the wall heat flux,
which are essential to predict the total drag of the vehicle and

to design the thermal protection.
Using the matched asymptotic expansions technique, the

defect approach allows us to improve the results of the stan-

dard higher-order boundary layer theory of Van Dyke, for a
similar cost. Particularly, it ensures a smooth matching of
the viscous and inviscid flows, even when the inviscid profiles

vary significantly through the boundary layer. When the wall
temperature is low and thus the displacement effect is negli-
gible, first-order defect calculations can give good results and
reproduce Navier-Stokes solutions with a reasonable accuracy
at a lower cost, as long as the entropy layer is not too thin

compared to the viscous boundary layer. But it gives less ac-
curate results on axisymmetric hyperboloids at low Reynolds

number far from the stagnation point, when the inviscid flow

normal gradients are higher than those of the boundary layer.
The inviscid flow concept seems to be invalid then.
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ADAPTIVE MULTIGRID DOMAIN DECOMPOSITION SOLUTIONS

FOR VISCOUS INTERACTING FLOWS
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gbs_ra_ L

Several viscous incompressible flows .with strong
pressure interaction and/or, axial flow reversal are
considered with an adaptive multigrid domain

decomposition procedure. Specific examples include the
triple deck structure surrounding the trailing edge of a fiat
plate, the flow recirculation in a trough geometry, and the
flow in a rearward facing step channel. For the latter case,
there are multiple recirculation zones, of different
character, for laminar and turbuiem flow conditions. A
pressure-based form of flux-vector splitting is applied to the
Navier-Stokes equations, which are represented by an
implicit lowest-order reduced Navier-Stokes (RNS) system
and a purely diffusive, higher-order, deferred-corrector. A
trapezoidal or box-like form of discretization insures that
all mass conservation properties are satisfied at interfacial
and outflow boundaries, even for this primitive-variable
non-staggered grid computation.

_u_on

Viscous interactions are typically associated with
turbulent or high Reynolds number (Re) laminar flows.
These interactions are quite frequently characterized by the
appearance of high flow gradients that are most significant
in small or 'thin' domains of finite extent, and in one or
more directions, e.g., boundary or vortical layers/regions,
triple deck structures, shock wave structure. Outside of
these regions, the flow is generally more highly diffused or
inviscid so that the flow gradients are less severe.
However, the flow character in these smoother regions,
which generally encompass a major portion of the flow
domain, can be significantly influenced by the interaction
with the high gradient layers. In order to accurately assess
this class of viscous interacting flows with discrete
computational methods, (I) local grid refinement is
required in the high shear layers, and (2) simple, effident,
adaptive methods, that effectively communicate information
between the disparate flow domains,and at the same time
maintain all conservation properties, are necessary.

In the present investigation, an adaptive, muitigrid,
domain decomposition strategy is combined with a
pressure-based form of flux vector discretization in order to
accomplish these goals 1"*. The governing Navier-Stokes
equations are evaluated through an implicit, lowest-order
in Re, reduced Navier-Stokes (RNS) subsystem_ that is
combined, when necessary, with an explicit purely diffusive
deferred-corrector (DC) in viscous layers. Local directional
refinement that is driven by specified flow parameters and
accuracy limits is achieved by sequentially splitting the
overall flow domain into a variety of subdomains. In the
present analysis, this domain decomposition strategy is
applied, in con_nctionwithan adaptive multigrid
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algorithm, in order to achieve the appropriate level of grid
refinement. In this approach, each grid in the multigrid
hierarchy, is of equal or lesser extent than all of the coarser
predecessors. The subgrids are split into several
multidimensional subdomains that are defined by specified
directional and global resolution requirements. A similar
approach has been presented for cavity and backstep
geometries in a recent publicationS; although, no attempt
was made to meet the differing needs for refinement in two
or more coordinate directions. In the present
investigation _, this is achieved with a subdomain procedure
that allows for segmentally varying grid resolution in two or
more directions throughout the flow field. This leads to
more optimal grid refinement, and, through the adaptive
muhigrid procedure, information is very effectively
transferred between high and low gradient domains that
have distinctly different grid structure. In addition, the
equation solver can differ from subdomain to subdomain,
e.g., direct solvers can be used in strong interaction
domains, line relaxation in moderate interaction domains,
etc.

In the present analysis, several two-dimensional,
steady, incompressible, large Re laminar and turbulent flow
examples are reviewed and the results are compared with
other computations or experiments. The problems to be
discussed include, the laminar trailing edge (triple deck)
flow past a finite flat plate, the laminar recirculating flow
associated with a trough geometry, and the laminar and
turbulent flows in a backstep channel. The use of pressure-
based flux splitting and a trapezoidal or box-like
discretization for the implicit RNS subsystem leads to a
precise prescription of the surface normal boundary
conditions on the local subdomain boundaries. This

ensures that interfacial and global mass conservation
requirements are automatically satisfied. This is generally
not the case with some characteristic-based Navier-Stokes
schemes, where special conditions are required in order to
satisfy interracial and global mass conservation. The
primitive variable system considered herein is also directly
applicable on non-stasgered grids. This differs from many
other incompressible primitive variable Navier-Stokes
formulations, that require pressure Poisson solver or
artificial compressibility concepts.

Governing Equations and Discretization

The governing Navier-Stokes equations, shown here in
sheared cartesian coordinates, is written for incompress_le
flow in non-conservation form:

u_ + % - 0 Continuity. (la)

* pc - _u w , DC _-momentum. (lb)
| !

u(V+ybu)_ + v(V+ybu)_ + p, - DC n-momentum.(lc)



i

|

where _ = x ; rl = y - yb(x) ; V = v - ybu is the

contravariant velocity component in the n or normal
i

direction (for yb(x) < < i) ; yb(x) is the surface definition
and (u,v) are the cartesian velodties in the (x,y) directions.

For turbulent computations, the k-e model is
employed. This introduces two additional equations for k
and e. These equations in cartesian coordinates and non-
dimensional form are given as:

v'lakl

c_kZR,
where v t ,, __ and cjs c, lt el2, o'e and o k are

c

predetermined dimensionless constants which have the
values 0.09, 1.44, 1.92, 1.0 and 1.3 respectively. A modified
k-e model was recommended by Thangam [17] in which the
value of the constant c¢ is changed from 1.92 to 11/6.
This was shown to give much better results for the backstep
channel geometry.

A three layer law of the wall is used at the upper and
lower walls. This is given as:

u ÷ = -3.05 + 51ny ÷ for 5 < y" _ 30

5.5 + 2.51ny _ for y+ • 30

where y÷ = yurlv and u ÷ = _lu,.

The RNS approximation is given by the lowest-order
system obtained by om/tting the purely diffusive deferred-
corrector (DC) terms. These terms are retained selectively
in some subdomains, when they are important. The RNS

system is in effect a composite of the Euler and 2nd order
boundary layer equations 1"3. Trapezoidal or "oox' two point
(ij-1/2) differencing is used for all normal derivatives in
the fu'st-order (in q) RNS equations (la, lc), and three
point central (ij) differencing (in n) is applied for the axial
momentum equation (lh). If a shear factor (7 = puy is
introduced in (lb), a box-scheme can in fact be developed
for the entire RNS system (I). All axial (_) convective and

pressure derivatives are upwind differenced with a
pressure-based form of flux vector splitting 3, wherein the pe
term is represented, for compressible flow, by

P[ " _-I/z(Pl-P4-1)/_! + (1-_._/z) (PI.l-Pl)/_i,

and _,,a " [y_l(Z ÷ (v-z)_),z].,..

Here, M t is the streamwise Mach number and y is the
ratio of specific heats. This reduces to a simple 'forward'

difference for incompressible flow, so that the elliptic

acoustic interaction or upstream influence is introduced
through the pt = (Pi÷t - Pi)/(A_)i contribution. For
reverse flow regions, additional negative eigenvalues or
upstream influences appear through the convective terms.

A simple line relaxation procedure is used to solve
the system of equations for k and e. The differencing used
for the k,e equation is consistent with the pressure flux-split
discretization. The law of the wall provides the boundary
conditions one point away from either wall, which can then
be used to implidfly to solve for k and e at any given
station. The k-e equations are decoupled from the
governing RNS equations. Each pressure relaxation sweep
is followed by a sweep to solve the k,e equations using the
latest available values for _, _. This procedure is

convergent.

Grid Structure

In genera_ the N a multigHd level consists of several
subdomaim. Each multigrid level has an equal or lesser
extent than the coarser grids of the multigrid hierarchy.
The first two grid levels cover the entire computational
domain. The mesh size is initially quite coarse in the
directiom in which adaptivity is to be prescribed. Each of
the mulfigrid levels comprise several subdomains, which
derive part of their topology from the subdomaining pattern
of the coarser predecessor. Within each subdomain, of a
given multigrid level the refinement is specified
independently. Thus, each subdomain of a multigrid level
can act as a parent for a subdomain or subdomains at the
next finer multigdd level. If at a given multigrid level a
particular subdomain is refined in only one direction, e.g.,
11, then on subsequent multigr_d levels, further refinement
within this subdomain is performed only in the fi-direction.
A similar strategy is adopted for the _-direction. Only
subdomalm that result from refinement of a parem
subdomaln in both the [ and n directions require further
decomposition according to the direction selective
refinement specifications.

l_efinement Strategy

In most adaptive gridding methods, on any grid level,
an estimate of the tnmcation error of the discretized system
of equations is used to identify those regions that require
finer grid resolution s . The overall truncation error
estimates, however, do not provide information on the
specific direction(s) that require refinement. Therefore for
regions requiring higher resolution, the grid is refined in
both directions, even though only one coordinate gradient

may be significanL In order to achieve directional
refinement adaptivity it is necessary to monitor the
truncation error of selected gradients or derivatives. For
the problems considered herein, the truncation error for the

pressure and vorticity gradients, e.g., pe and u,,, are
monitored in order to define the regions that require
refinement in, _ and n, respectively. Additional gradient
parameters can be added when necessary.

The truncation error estimate is obtained from the

solution on two successive grids of the multigrid hlerachy.
In order to determine the truncation error in a _ (and/or

:_=

h



_) derivative, the finer of the two grids must have regions
that are refined in the [ (and/or tl) direction(s). Although
the pt and u_ terms are the key derivatives for the
present analysis, the truncation error of these terms alone
will not suffice to ensure that uniform accuracy is achieved
throughout the flow domain. The global truncation error
for the full discrete system of equations is monitored for
this purpose.

Two types of adaptive calculations axe performed for
the geometries considered herein.

a°

b°

One-dimensional adaptive calculation (semi-
coarsening multiglSd), with adaptivity in the
direction and with a preset stretched _ grid.
Two-dimensional adaptive calculation, in which the
refinement is automated in both directions and
uniform grids are used in each subdomaln. Grid
stretching is not applied, except as the grids change
discretely from subdomain to subdomain.

The underlying procedure is identical for both
methods. The solution is first obtained on a coarse grid,
for those direction(s) in which adaptive mulfigrid
refinement is to be considered. For the semi-coarsening
adaptive calculation" refinement is performed only in the
direction. The grid is refined over the entire domain, and
an improved solution is obtained. From the two full grid
solutions, the truncation error of the key derivatives and
also of the global discrete system is estimated using
Richardson extrapolation. Two types of refinement criteria
are used. In one procedure, a tolerance is set for the raw
truncation error and, in the other, a tolerance is set for a
truncation error normalized with the maximum value. The
results obtained with the two methods, i.e., identification of
the regions that require refinement in the respective
direction(s) axe quite similar.

For the one-dimensional (in _) adaptive calculation
only one subdomain results. This decreases in extent as the
grid level increases. For the problems considered herein,
the significant flow gradients in _ are centered around the
small region I_1 < _o- For more complicated flows, it is
possible that disjoint subdomains in _ will result. For the
two dimensional adaptive calculation, however, the various
regions will have different refinement requirements;
therefore, it is necessary to define regions that have
disparate grid requirements. Subdomaim requiring
refinement in the n direction, or the _ direction, or in both
(_,n) directions, are identified. Although different meshes
are used in different regions, within each subdomain" a
uniform grid is specified. This procedure is applied on the
third and higher levels of the multigrid hierarchy. The
calculation proceeds with intergrid multigrid transfers. On
convergence, the truncation error estimation process is
repeated with the N t_ multigrid and the stored (N-l) '_
multigrid level grid solutions,

Multi__'/dImplementation

For the RNS system of equations (1), without DC, a
semicoarsening multigrid procedure has been presented
previously9'1°to accelerate the convergence of the global
pressure relaxation procedure la. A yon Neumatm analysis

of the linearized form of the RNS system shows that the
rate of convergence of the global procedure is dictated by
the maximum eigenvalue I, as given by

where cI is a constant of 0(1); Nt is the number of stations
in the _ direction; _M is the normal boundary location, and
A_ is the axial step size. The convergence rate is
significantly improved if the extent of the domain in the
two directions is reduced. The cun_nt multigrid domain
decomposition procedure, in effect, reduces _ra whenever a
fine ,4_ is specijiea_ and thereby achieves comparable 'coarse
grid' convergence rates on fine grids.

In the present application the multigrid method is
implemented in a Full Approximation Storage (FAS) mode.
The global pressure relaxation procedure considered herein
essentially reduces to a block SOR procedure (in _) for the
pressure in attached flows and for the pressure and
velocities in reversed flow regions. At each station, an
implidt, fully coupled tridiagonal system is inverted. When
highly stretched grids are used in 11to resolve the boundary
layer, the semi-coarsening mode of the multigrid method
has been shown to be more effective than the standard full
coarsening mode. In this mode, the streamwise grid alone
is coarsened when the calculation shifts to coarser grids.
The same 11grid is retained throughout. Significant gains
in the overall effort have been achieved with this
approach 9,1°.

A source term (IST), first introduced by Israeli u, is
required in order to achieve satisfactory performance of the
multigrid procedure 2°. The IST acts as a form of under-
relaxation or smoother for the pressure field. This leads to
much smoother residual fields, which are essential for good
representation on the coarser grids. However the IST leads
to a slower asymptotic convergence rate on any given grid.
The domain decomposition procedure reduces this
limitation to a large extent. Since the truncation error in
the pt term is used to determine regions needing
refinement in the _ direction, subdomains in which the grid
is only refined in the 11 direction, will generally have a
reasonably converged pressure field from the coarser grid.
Thus it is possible to perform the multigrid calculation
without the IST smoother in these subdomains.

In the present investigation, the one-dimensional
adaptive calculation adds an element of sub<iomalning to
the semi-coarsening analysis9.t°,so that only portions of the
global domain require fine grid resolution in the
direction. For the two-dimensional adaptive calculation,
the multigrid algorithm is implemented in the standard full
coarsening for domains that require refinement in both
directions and the semi-coarsening mode for those domains
requiring refinement in only one direction. One fine grid
work-unit is comprised of one sweep in each subdomaln
belonging to a given multigrid level This also includes the
interdomain transfer processes. The decision to move the
calculation back to a coarser grid is based on the rate of
convergence on each subdomain, If the ratio of the
residual norm between two successive global iterations, in
any subdomain belonging to that multigrid level, falls below
a certain value, typically 0.85-0.95, then the calculation is
restricted to the coarser level The fine grid solution is not



corrected until the residuals in the coarse grid subdomains
are all reduced to a value one order-of-magnitude lower
than the maximum residual over all subdomains in the finer
level. The multigrid components are summarized as
follows,

a. Relaxation: u_ = Sku.__k,where Sk is the global
pressure relaxation operator and uk on convergence
satisfies LI_Jk = ft. Here k represents the present or
finest multigrid level and n represents the iterate.
L_k = it is the discrete approximation of the
continuous problem Lu = f

b. Restriction to coarse grid where the following

equations are SOlved:Lk.lUk-_ = Xk-t-_rnk+ .Tk-Iyk-L.k_'.k
for points on the coarse grid which lie within the fine

grid and Lk-IU k-1 = £k-I for points on the coarse grid
that lie outside the extent of the fine grid. Here

' e L'.ko.I:-Iand arefinetor n _

grid transfer operators. The fuli-weighting operator
recommended by Brandt_z is used to transfer the
residuals and the solution was restricted by using a
simple injection operator.

c. Prolongation or correction where the fine grid
solution is corrected with the solution from the coarse
grid modified problem.

k Ik (uk__ -k-1 k. k_*I = Un + k-1 - I k Un), where Ik_ I is a

coarse to fine interpolation operator

It should be noted that in the present calculation, the
multigrid transfer operations play a dual role. In addition
to accelerating the convergence of the relaxation procedure,
they also transmit information from the finer grids to the
coarser grids, and thus improve the accuracy of the solution
in regions of the coarser grids where refinement was not
required. The second term in the multigrid restriction
process, acts as a truncation error injection term and
improves the discrete approximation on the coarse grid.
Thus on the coarser gr/ds, instead of solving Lk'Iu k't = _-1

everywhere, we solve Lk-hl = r in part of the domain,

where _, = r.k-_1_-_Uk. This is closer to the continuous

problem La = f. Here L is the continuous counterpart of
the discrete operator Lk'xand u is the exact solution for the
continuous problem; u k'xis the exact solution to the discrete
problem and 0 is the improved solution due to the
modified right hand side of the discrete approximation.

The deferred-corrector in (1) is input as a prescribed
functional form on the right hand side of the fine grid
equation. On any given grid level, the calculation is
initially considered without the DC term. After a
reasonable level of convergence is achieved, e.g., 10"s,the
DC term is evaluated from this known solution. This value
is prescn'bed on the finest grid and added explicitly to the
right hand side of the equations. This term is transferred
to the coarser grid levels through the standard mult/grid
procedure. If the DC term is introduced earlier, divergence
results. This is due to the fact that the solution is initially
quite poor and therefore the presoa'bed DC term is
significantly in error. This distorts the differential equation
and induces an instability in the pressure during the
relaxation procedure. If the RNS solution is allowed to

converge moderately before introducing the DC term, the
overafi solution procedure, with the DC addition, exhibits
no signi_cant degradation in rate of convergence for the
examples considered herein.

For turbulent flow modelling, the eddy viscosity vt is
calculated only on the finest grid. The fine grid values of
vt are injected to the corresponding coarse grid points
during the restriction step. The vt values, at points on the
coarse grid, that lie outside of the extent of the fine grid
are not updated. This procedure is validated by
calculations that do not include any adaptivity. In this case,
the fine grid extent is the same as that of the coarse grid.
Therefore, the vt values at aLlpoints on the coarse grid wili
be updated. The results obtained from this full refinement
calculation and those from the fully adaptive multigrid
calculations are identical

Interdomain Transfer of Boundary_Conditions and
Conservation at Grid Interfaces

For a given subdomain, the following boundary
conditions are to be prescribed:

u =v = Oatq = O;u = 1, p =Oatq = _;
p_= 0 or p prescribed at _ ffi _; u and v are given
by freestream values at _ = _0-

For external flows, if a subdomain has its outflow at some
< _m_, then the boundary condition on pressure changes

from Neumann to Dirichlet type. For internal flow, the
outflow boundary condition is Dirichlet type for the
pressure. ALso, if the lower boundary of a subdomain is at
some q > 0, then non-zero velocities have to be prescribed.
In time-dependent, characteristic-based, Navier-Stokes
computations, that use locally embedded grids, boundary
conditions are required for all variables, i.e., u, v, and p. In
addition, special care has to be taken to ensure that mass
conservation is not violated locally or globally.

In the pressure-based trapezoidal or %ox' formulation,
this difficulty does not occur as the normal velocity v in q,
or u in _, is not prescribed at the upper or lower, or
outflow boundaries. Only the tangential component u is
prescribed at the upper interface or interdomain boundary.
The pressure-based box-type differencing allows for the
calculation of the normal velocity at the outer boundaries
and the pressure at the body surfaces. The normal velocity
is computed from the continuity equation and therefore
mass conservation is automaticaliy satisfied on all levels, for
all subdomains. This eliminates the need for special
interpolation formulae to ensure conservation of mass when
the boundary conditions are prescribed from the coarse gr/d
solution. Thus weak instabilities, that arise when such
methods are applied in Navier-Stokes formulations without
satisfying mass conservation, do not appear in the present
method. Direct evaluation of the pressure at the inflow or
lower boundaries with the trapezoidal or box discretization
also eliminates the need for special pressure boundary
conditions.

The calculation is performed sequentially rather than
in parallel in the various subdomalns. As such the
boundary conditions at the inflow and outflow stations for



eachsubdomalnareupdatedwith the latest available
values. The overlap allowed in the subdomaining process
follows the following rules.

a.

b.

C°

d.

The last station of any subdomain, which is at some
< [,... coincides with the first station of the

subdomain to its right, (if one exists), where the
pressure is computed.
Similarly, the inflow station of any subdomain, which
is at some [ > 0 coincides with the last station on the
subdomain to its left, (if one exists), where the
velocities are computed.
If the inflow station or the outflow station of a given
subdomain coincides with the physical boundaries of
the global flow field then the boundary condidous
discussed previously for inflow, outflow, upper and
lower boundaries are used for these subdomains.

If there are no subdomains to the right, for the cases
in a), or if there are no subdomains to the left, for
the eases in b), then these boundaries are updated
using coarse grid values during the multigrid
prolongation process.

In the vertical direction an implicit solver is applied and no
overlap is necessary.

If a subdomain has only one of its horizontal
boundaries in common with that of another subdomain,
then updating the boundary conditions along this edge,
after one sweep in all subdomaius, leads to iterative
divergence on this subdomain. This influence gradually
fiIters through to other subdomaius. If these boundaries
are updated through the multigrid transfer processes, then
the calculation is convergent. This reflects the fact that an
update of just one boundary after each sweep, with the
other three updated only during the multigrid transfer
process, leads to an inconsistency. This constrains the
variables from adjusting to changes that occur dynamically,
as the solution evolves in the various subdomalus. The
multigrid transfers provide the correct dynamic response to
changes between subdomains.

All of the calculations presented herein are initiated
on the coarsest grid, with uniform flow velocity and
pressure. On the finer grids, the interpolated coarse grid
solution fields are. sequentially applied as initial
approximations. Since convergence to the final solution is
improved with more accurate initial approximations 5_)._°,the
adaptive multigrid framework introduces this element in a
natural and convenient fashion. It is significant that for all
of the examples presented herein, Reynolds number
continuation is not required in order to obtain a solution
for any of the prescribed values of Re. Even for highly
interactive, large Re flows, the solution is obtained directly
with uniform initial values at the designated value of Re.

Example 1: Flow over a finite fiat plate: the trailing
edge problem s.

Figure 1 depicts the grid obtained for a semi-
coarsening (in _) adaptive calculation. The q grid is highly
stretched and fixed. Note that the finer grids zoom in

around the trailing edge, which is located at _ -- 1.0 (the
figure is scaled by a factor of 2 in the _-direction).
Significantly, the extent of the finer grids in the _ direction
is progressively reduced, even when adaptivity is specified
only in the [ direction. Although each multigrid level
contains only one subdomain (in [) that requires further
refinement on subsequent leveLs, the _ extent of this
subdomain is affected.

Figure 2 depicts the composite grid obtained with full
two-dimensional adaptivity. Within each subdomain,
uniform grids, in both the [ and rl directions, are
prescribed. Figure 2 is an overlay of seven muitigrid levels,
each of which comprises several subdomains. In each level,
it is found that the subdomaln, for which refinement in
both directions is required, is centered around the trailing
edge. The adaptive computations, both semi-coarsening
and two-dimensional, are compared with non-adaptive
semi-coarsening multigrid calculations. For the latter, a
uniform fine grid in _ and a highly stretched 11grid is
prescribed. The grid stretch factor is chosen from the
specified minimum and maximum _rl values, and the
location of _,_ that was applied for the two-dimensional
adaptive study. The same _ grid is employed for the
adaptive semi-coarsening calculation. Figure 3 shows a
comparison of the pressure coefficient C_ for the three
calculations. There is good agreementin the pressure
variation and, in particular, the predicted peak pressures.
Table 1 summarizes the computer memory and CPU
requirements. These ate given as percentages of the non-
adaptive, semi-coarsening, calculation. Note that the
memory requirement for the one- and two-dimensional
adaptive calculations are similar. This signifies that the
specitied q stretching for the semi-coarsening calculation is
reasonable.

Table 1. Summary of Computer Resource Requirements
for the finite fiat plate calculation

Aspect

CPU

Memory

Two-D
Adaptive

18.03%

12.90%

One-D

Adaptive

15.10%

13222%

Full Refinement
with stretched

grid

I_.0%

1_.0%

The adaptive grid of Figure 2 defines the extent of
the interaction zone surrounding the trailing edge. From
large Re asymptotic triple deck theory, three layers with
different length scales have been identified TM, viz., a lower

-5/sviscous rotational deck of 0(Re ), a middle inviscid
rotational deck of 0(Re'4/_), and an upper inviscid
irrotational deck of 0(Re'3_. Since the vorticity is zero in
the upper deck, and since vorticity is the monitored
parameter for refinement in the rl direction, the adaptive
procedure should lead to a grid that does not require tl
refinement in this 'upper deck' region. The grid obtained
from the two-dimensional adaptive calculation displays this
restdt quite clearly. At each multigrid level, there is a
region away from the body that is in fact refined oniy in the

direction. This region, in the finest multigrid level
represents the extent of the upper invisdd irrotational



region Estimates for the extent of the other two 'decks'
are also obtained from the grid structure. In more
complicated flows, e.g., turbulent flow past the same
geometry, for which analytical methods cannot be easily
developed, the appropriate resolution in each distinct
region will be automatically captured with the present
muhigrid adaptive procedure. In this sense, the
computation results in a form of discrete asymptotic analysis.

Example 2. Flow over a trough 6.

The second geometry to be considered is the laminar
flow over a trough configuration. Both unseparated and
reverse flows are computed with the two refinement
strategies previously discussed. The trough surface is
specified by Yb = -D sech[4(x-xe)], where D represents the
maximum depth, which occurs at the location x0. The
values x0=2.5 and Re = 80000 are used for the present
calculation. The grid obtained from the two-dimensional
adaptive procedure, for D=0.03 and with a region of flow
reversal, is shown in Figure 4. Note that refinement in the
n direction extends to a significantly greater distance than
was found for the trailing edge geometry. This is due to
the fact that the maximum voracity now occurs near the
outer edge of the separation bubble and not at the surface.

Also note the sudden increase in the extent of the region
where n refinement is performed. This signifies the
increase in boundary layer thickness as a result of flow
separation. The reversed flow region is essentially voracity
free; however, the current refinement strategy assumes that
regions requiring refinement, in the _1direction, will always
have a lower boundary at the wall. This condition can be
modified to allow for multiple vl subdomains in the
recirculation region. This was not considered necessary for
the current calculations. Figure 5 depicts the pressure
variatiom obtained for the three calculations discussed

previously for purely attached flow and D=0.015. Figure
6 provides comparisons of the skin friction for the
separated (D=0.03) case. Once again good agreement is
obtained and significant gains in computer resource
requirements are found (Table 2). The locations of the

Table 2. Summary of Computer Resource Requirements

for the trough geometry

Aspect

CPU

Memory

Geometry

Trough

ugh

Trough

Trough
foa_.p_

Two-D

Adaptive

18.03 %

7.10 %

16.32 %

5.10%

One-D

Adaptive

m

16.80%

Full
MG

with non
uniform

n grid

100.0%

I00.0%

100.0%

100.0%

separation and reattachment points computed by the two-
dimensional adaptive calculation are at [=Z31 and

=2.54, respectively; the values predicted by non.adaptive

full mulfigri'd refinement are at _ =2.31 and _ =2.53. This

further confirms the validity of the domain decomposition
approach and the advantages of adaptive multigrid over full
multigrid. All results presented here are in excellent
agreement with all earlier results 1'9 presented for these
geometries.

Example 3. Internal flow In a back step channel:
laminar 7_ and turbulent flows.

For this flow, which is dominated by rather large
recirculation regions, it is still possible to carry out the
calculation for all Re considered herein by prescribing
uniform initial flow conditions. This is true even for the

relatively difficult, although somewhat artificial two.
dimensional calculation with Re =800 (based on channel
height). For this Re value, two separation bubbles, one on
each wall are evident. Reynolds number continuation, as
applied in many other reposed NS solvers u, is still not
required for the present calculations. Both laminar:
(Re = 800) and turbulent results are obtained for the back
step geometry. The standard two equation k-e model
discussed cartier is used for turbulence closure.

For laminar calculation, a step height to channel
height ratio of 0_5 is used. The reattachment length (XQ
for the'primary recireulation zone is compared in Table 3
for a range of laminar Reynolds numbers. Comparisons
are given for the present 2-D adaptive method, fiall
refinement with the standard non-adaptive multigrid
method, and earlier calculations by Ferziger s, Caruso Lsand
Sotiropoulos is. The calculated reattachment length for the
adaptive and non-adaptive procedures is identical to two
decimal places; however, the computational effort is
considerably less for the former, see Table 4.

Table3. Comparison of Reattachment Length for
Laminar Baekstep Channel Flow

Re

133

267

400

600

Present Calculations

Adaptive Non-

Adaptive

1.94 1.94

3.25 325

4.32 4.32

5.50 5.50

REF

[5]

2.0

3.25

4.35

5.35

REF REF

[I51 [131

1.95 1.84

325 3.17

4.40 4.40

5.40 5.63

For adaptive refinement in the n direction the
truncation error is scanned from the wall towards the outer

boundary. For external flow, the voracity gradient
decreases exponentially and a thin layer near the wall,
where refinement is maximum, can be identified. This
region is specified by fixing the upper boundary at the
furthest point, or largest n value taken over ail _ locations,
that satisfies the truncation error tolerance. For internal

flows, boundary layers, where refinement in !1 should be
required, exist at both boundaries in the normal or n
direction. However, the number of grid points that are

necessary to resolve the flow gradients in the I! direction is



quite moderate and therefore no attempt was made to
adaptively refine in this direction. Instead, the full
multigrid procedure is applied in the n-direction for each
of the subdomains for which _-refinement is necessary.
This allows for different uniform rl grids in the differem
subdomains.

Table 4. Summary of Computer Resource Requirements
for the Backstep Geometry

Aspect Re

CPU

AdaptiveMultigrid/Full
Refinement NonAdaptive Multigrid

133 35.49 %
267 36.15 %
400 46.23 %
600 50.40 %

133
_7

Memory 400
60O

30.80 %
37.44 %
41.49 %
47.49 %

Table 4 displays the computer resource requirements for
the backstep channel calculation For each Reynolds
number, the CPU and memory requirements are shown as
percentages of the corresponding non-adaptive calculations.
Note that as the Reynolds number increases from Re = 133
to Re=600, the number of grid points required to resolve
the flow field increases. This is expected, as the size of the
separation bubble increases with Reynolds number. The
number of required grid levels, as well as the finest mesh
size for all Reynolds numbers up to Re =600, is identical in
each direction. A total of five muitigrid levels are defined
for aLl Reynolds numbers up to Re=600. However the
subdomain extent for each multigrid level/s different for
different Re. The extent of the finer grids is governed by
the size of the reeirculation zone, which increases as Re is
increased. For the Re=800 ease, six multigrid levels are
required, as the change in the solution from level 4 to level
5 is still significant and greater than the specified tolerance.

An increase in computational time and memory
requirements is observed as the Reynolds number and
associated number of grid points increases. The time
required for the full refinement non-adaptive calculation
increases only marginally as Re is increased from 133 to
600. This increase is entirely due to the changing nature of
the flowfield" since the same grid is used throughout this
Re range. More specifically, when the degree of velocity
relaxation is increased due to the increasing extent of the
reversed flow region, the convergence rate degrades and
additional iterations are required to achieve the specified
tolerances. Furthermore, the percentage gain in adaptive
over non-adaptive procedures is reduced as the Reynolds
number increases, e.g., to about 50% at Re =600.

The effect of location of the outflow boundary and the
non-reflectivity of the outflow boundary conditions are
important aspects of this study. The adaptive multigrid
domain decomposition procedure is initiated on a very
coarse grid, and yet, it is poss_le to place the outflow
boundary quite far downstream, e.g., 60 step heights, and
still recover very accurate and computer efficient

computations. The solutions at the outflow are in almost
perfect agreement with the analytic fully developed flow
values. Although the finer grids in _ and rl occur in
subdomains much further upstream, in and near the reverse
flow regions, the influence of the outflow boundary
conditions is propagated through the muitigrid transfers to
and from the coarser grids connecting the various
subdomains. This allows for efficient transfer of
information without excessive grid specification. In
addition, as is shown s, the RNS pressure flux-splitting
procedure allows the outer boundary to be placed very far
upstream, e.g., within the upper wall recirculation region,
without solution degradation.

For the laminar back.step, the DC terms neglected in
the RtgS approximation have been included after obtaining
a reasonably converged base solution for the RNS _tem.
For this geometry, the vertical wall region near the step
corner represents the only portion of the flowfield where
the fur Navier Stokes terms are of any consequence.
Along the vertical wall, the v= term represents the vortical
or diffusive boundary layer influence. It is founds that in
this region, although the inclusion of the DC term does not
produce a significant quantitative difference, some
qualitative difference is observed in the solution. Figures
7a-7d depicts the streamwise velocity profile for Re =400 at
four successive stations near the corner. Note that the
effect of the DC diminishes rapidly away from the corner.
A significant difference between the two solutions is
associated with a small positive axial velocity that is
observed near the corner when the DC is included.
represents a counter rotating vortex within the primary
separation bubble. The reattachment length remains
unchanged even when the DC is included.

The non-refiectivity of the Dirichlet pressure outflow
boundary condition was tested for the severe Re =800 case
with calculations on computational domains of three
different lengths. It was found that for the cases
considered, locating the outflow boundary further upstream
did not have a sign/ficant effect on any of the solutions.
Comparisons of the streamwise velocity profile at the
streamwise location X=7 are given in Figure 8. The
outflow boundary was located at X=7, X= 15 and X=30;
the results dearly indicate that the effect of the outflow
location on the solutions is minimal Figure 9 shows the
comparison of the stream function contours obtained by
placing the outflow at X=7 and X= 15. The two contour
patterns are identical s.

A benchmark solution for Re=800 has been
published by Gartling 14. The present solution, which is
obtained with the adaptive multigrid domain decomposition
procedure, is compared with these results. In Figure 8,
comparison with the benchmark solution of the streamwise
velocity profiles at X=7 is also shown. Note that reverse
flow also occurs on the upperwall. The appearance of this
upper separation bubble is thought to introduce three-
dimensionality into the flow, and for this reason there is
some disagreement between the experimental results and
all of the numerical solutions. However, the present
restdts, which are totally grid independent, agree quite well
with most of the other numerical computations. Due to the
very fine meshes that have been prescribed with the



multigriddomain decomposition procedure, the residuals
and truncation errors axe quite small and therefore these
numerical solutions, are considered to be highly accurate.
Figure 10 depicts comparison of vorticity profiles. The
agreement with the benchmark contours 1+ is excellent
throughout. Moreover the results are essentially unchanged
with the outflow boundary at X=30 or X=7, which is inside
the upper recirculation zone s for the Re=800 case.

Figures 11 and 12 show typical grids obtained using
the adaptive multigrid procedure for the backstep channel
Figure I1 shows the grid for Re= i00 and Figure 12 depicts
the grid for Re=267. Note that the region covered by the
finest grid is larger in extent for Re=267. This is expected
as the region of reversed flow is larger in this case. Note
that the grid used in the y-direction is quite coarse far
downstream where the flow is fully developed. This reflects
the fact that the truncation error is very low in the normal
derivatives in this region. Since the fully developed flow
profile is parabolic, central differencing will theoretically
incur zero truncation error. In streamwise direction, a grid
as coarse as Ax=0.5 can be used towards the outflow
without loss of accuracy. The adaptive muitigrid procedure
clearly utilizes this fact and provides optimal resolution.

The turbulent flow past the backstep channel is of
interest in many engineering applications. For the current
study, the k-¢ model has been used to compute the
Reynolds stress terms. This model requires that inflow
values for k and e be prescnl_ed. For the present
calculation these values are generated from a straight
channel turbulent flow computation with a step initial
profile. The k, e, u and v profiles obtained at the outflow
of the straight duct are used as the inflow conditions for
the backstep calculation- This inflow is located at a
distance five step heights upstream of the step comer. It is
noted that the overall natare of the flow field, including the
reattachment length is strongly dependent on the inflow
values used for k and e. Different profiles for k and • can
be generated by varying the length of the straight duct.
This will greatly alter the backstep channel solution. A
channel length of 23 step height was used to generate the
inflow profile for the present calculation. This ensures that
the profiles are quite well developed. The corresponding
velocities, k and e profiles are then used for the back.step
channel calculation. Once again, the inflow is located five
step heights upstream of the step corner. Thangam et aL16
observed that the predicted reattachrnent length using the
standard isotropic k-¢ model was in error by about 12%,
when compared with the experimental value. They showed
that a modified k-e model which takes anisotropic effects
into account provides improved results. In another study by
Thangam zT, it was shown that a modified isotropic k-¢
model can also lead to improved results. This model,
which requires only the variation of a single constant, is
considered for some of the calculatious presented herein.

The step height to channel height ratio used is 1_ in.
the present calculations. A re.attachment length (x/H) of
7.04 was obtained for a Re= 132000 based on channel

height. This is in very good agreement with the
experimental value of 7.1. Figure 13 shows the
streamfunction contours for the same flow. Note that there
is a secondm7 counter rotating vortex within the primary

separation bubble. This was also observed by Thangam eL
al|6. The calculation was also performed by modifying the
value of ca to 11/6 as suggested _7. The reattachment
length increased, in this case, to 7.66. This was also the
trend observed 17. Although in their case, the standard k-e
model was underpredicting the reattachment length and
modifying the constant produced acceptable results.

_Lalma_

An adaptive multigrid domain decomposition method
has been used to e_dently compute incompressible
laminar and turbulent flows with regions of recirculation
and strong pressure interaction. A low order RNS system
of equations, a fuily consistent primitive variable non-
staggered grid solver, accurate mass conservation at
subdomain interfaces and global boundaries, non=reflective
outflow boundary conditions and a pressure-based flux-split
discretization are the key features of the procedure. The
adaptive multigrid domain decomposition procedures allows
for efficient grid definition consistent with asymptotic
theory and for effective transfer of information to and from
fine grid high gradient regions to coarse grid 'inviscid'
regions.

Signi_cant gains in computer resources have been
achieved when compared to standard non-adaptive
methods. Good agreement is obtained between the present
solutions, standard non-adaptive full refinement
computations and other published results. The
computational cost is several times smaller than that
required by most other NS methods u. For example, the
CPU required for the backstep channel calculations, with
Reynolds numbers in the range 100600, varies between 5-
10 minutes on an IBM 320 RISC/6000 workstation. For
the Re=800 case, an additional mu!tigrid level is added to
ensure grid independence and the CI'U required is
increased to approximately 30 minutes on the same
workstation. All solutions are initiated with uniform flow

approximatious and Reynolds number continuation is not
required, even for the relatively complex Re=800 case.
Grid convergence has been established efficiently through
an adaptive muitigrid procedure. The outflow boundary
condition has been shown to be non-reflective. In addition,
it has been shown that the procedure is not very sensitive
to the location of the outflow, i.e. far downstream or
somewhat closer to the inflow. The flux-split discretization
allows for direct computation of the normal velocity and
therefore mass conservation at grid interfaces and
subdomain boundaries is achieved in a simple fashion.

This research was supported in part by the NASA
Lewis Research Center (J. Adamczyk, Technical Monitor),
Grant No. NAG-397 and by the AFOSR (L SakelL
Technical Mon/tor), Grant No. 90-0096. The Cray Y-MP
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computations.

References

1. Rubin, S.G. and Reddy, D.R., "Analysis of Global
Pressure Relaxation for Flows With Strong



Interaction and Separation', Computers and Huids,
11. pp. 281-306, 1983.

2. Rubin, S.G., qncompressible Navier-Stokes and
Parabolized Navier-Stokes Formulations and

Computational Techniques', Computational Methods
in Viscous Flows, Vol. 3, W. Habashi, Ed., Pineridge
Press, pp. 53.99, 1984.

3. Rubin, S.G., "RNS/Euler Pressure Relaxation and
Hux Vector Splitting. Computers and Fluids, 16. pp.
485-490, 1988.

4. Fuchs, L., "A Local Mid-Refinement Technique for
Incompress_le Hows', Computer and Huids, 14. pp.
69-81,1986.

5. Thompson, NLC. and Ferziger,J.H, "An Adaptive

MultigridTechnique for the IncompressibleNavier-

StokesEquations",J.ofComp. Physics,81 pp.94-121,
1989.

6. Srinivasan,K. and Rubin, S.G.,"AdaptiveMultigrid

Domain Decomposition Solutionsof the Reduced

Navier-Stokes Equations', Proceedings of Fifth SIAM
Conference on Domain Decomposition Methods for
Partial Differential Equations, Norfolk, VA., May
1991.

7. Srinivasan, K. and Rubin, S.G., "Flow Over a

Backward Facing Step Using the Reduced Navier-
Stokes Equations', Proceedings of the Minlsymposium
on Outflow Boundary Conditions, Stanford University,
July 1991.

8. Srinivasan, K. and Rubin, S.G., "Adaptive Multigrid
Domain Decomposition Solutions for Incompressible
Viscous Flows', submitted to Int'l J. Num. Methods in
Fluids.

9. Himansu, A. and Rubin, S.G., "Muitigrid Acceleration
of a Relaxation Procedure for the Reduced Navier-

Stokes Equations", AIAA J., 26. pp. 1044-1051, 1988.
10. Rubin, S.G. and I-Iimansn, A., "convergence

Properties of High Reynolds Number Separated Flow
Calculations", Int'l J. Num. Methods in Fluids, 9. pp.
1395-1411, 1989.

11. Rosenfeld, M. and Israeli, M. "Numerical Solution of
Incompressible Flows by a Marching Muitigrid
Nonlinear Method', AIA.A J., 25. pp. 641-47, 1987.

12. Brandt, A., "Multi-level Adaptive Solutions to
Boundary Value Problems", Mathematics of
Computation, 31. pp. 333-390, 1977.

13. Sotiropoulos, F., "A Primitive Variable Method for
the Solution of External and Internal Incompressible
Flow Fields', Ph.D Dissertation, University of
Cincinnati,1991.

14. Gartling, D.K, "A Test Problem for Outflow
Boundary Condition - Flow Over Backward Facing

Step", Intq Journal of Num. Meth. in Fluids, 11. pp.
953-967, 1990.

15. Caruso, S. "Adaptive Grid Techniques for Huid Flow
Problems", Ph.D Thesis, Thermosciences Division,
Department of Mechanical Engineering. Stanford
University, California, 1985.

16. Thangam, S. and Spezial, C.G., Wurbulent Separated
Flow Past a Backward Facing Step: A Critical
Evaluation of Two-Equation Turbulence Models,
ICASE Report No. 91-23, February 1991.

17. Thangam, S. "Analysis of Two-Equation Turbulence
Models Tor Recircuiating Flows', ICASE Report No.
91-61, July 1991.

i8. Eaton, J. and Johnston, J.P., "Turbulent Flow
Reattachment: An Experimental Study of the Flow
and Structure Behind a Backward Facing Step',
Technical Report MD-39, Stanford University,
California, 1980.

(X scaled by fact_ 2)

(Y scaled by factor 3)

li

2.0

1.6

Y

1.2

0.8

0.4i

0.0 I i

Figure II

l.O 2.0
X

Nultigrld levels (one-dimensional

adaptiyity); trailing edge flow

(ReJlO _)

I Iii,Iti
3.0 r[ ! f I I

71 i i
"i i i

zo _ " 1

! i

t.o- . !

i i I
I

i,.me
0.0--

0.0 1,0

Figure

"_- ---V-I- IX scaled Oy 2)
! i i (v scaledby ,3)
•i f !

i i
', _ _

, ; ]

ii
i !

i !,I
ii :
i

mi I .....
2.0 3,0 4,0 5.0

x

2. Nultigrid levels (two-dimenslonal

adaptivity) ; trailing edge flow

(Reml&)



I

-- !

I

!

...... I÷

|iinn m

1.0 2.0

X

• t

[

i

n

i

i

b
I

am

3.0

Figure 2a. Enlargement of the fine grid
region in Figure 2.

2.0

I I I I I
3.0

Figure 4a. Enlargement of the fine grid
region in Figure 4.

!

l

0.010

Cp

-o.ooo

One 0imensional Adapttvity
.... Two Dimensional Adaptlvity

- Full Refinement (Stretched y grid)

-0.010 -_F .............

-0.020 L I , , t , , , i Z * , i • I L

0,5 1.0 X 1.S 2.0

Figure 3. Comparison of cp variation;
trailing edge flow (Re-t0 _)

0.030

0.020

Cp

0.010

0.000

', .... Two Dimensional Adaptivity

t, --.--One Dimensional Adaptivity

_; Full Refinement {Stretched 11Grid)

"i,,
\',

/ I
,\

t .... I .... I , , , , l .... n .... I ,

,.5 2.0 2.5 _ 0.0 0.5 ,.o

Figure 5. Comparison of Cp variation;
unseparated f low past trough
(D=0. 015, Re=80000)

t .50

1.00

0,50

0.00

2.0 3.0

Ficjrture 4. Multicjrid levels (two-dimensional
adaptivity) separated flow past
trough (D-O.03, Re=80000)

1.0!-

L0

.0

0

.0

Full Refinement (Stretched _1grid)

--Two Dimensional Adaptivity

\

Figure 6. Comparison of skin friction
parameter; separated flow past
trough (D=O.03, Re-80000)



0._ 0.25 0.50 0.75 U _'_ 1.2S tSO

Figure 7a. Comparison of streamwlse

velocity profile at x=0.0625;

Backward facing step (Re-400)

0.0

(12

Y

-0.0

| ,2" -- WithOut De(erred CorreCtO_"

.o.sl. I _ _.' .... ' ":: _ ' ' _ ' ' _"
.0.oo 0.25 0.so o.7s u Loo % 1.2s 1.so

Figure 7b. Comparison of streamwise

velocity profile at x_O. 125;

Backward facing step (Re-400)

0S

Wilhou( C_ferred Corrector
..... Wilh Oeferred Correclc_

-0.0

-0.S

0.00 0.25 0.50 0.?S 1.00 1.25 1.SO
u

Figure 7c. Comparison of streamwise

velocity profile at x-0.1875;

Backward facing step (Re-400)

-- Without Deferred CorrectOr

..... With (Deferred Co,'rector

• (1_ I .... _ .... f .... I , , i , | j • • • t • , i i

0.00 0.25 o.so 0.75 t.oo t25
u

Figure 7d. Comparison of streamwise

velocity profile at x=0.25;

Backward facing step (Re=400)

-- Xmax-7.0

..... o

o.oo o.2s oso U o.?s too

Figure 8. Comparison of streamwise

velocity profile at x-7; Effect

of location of outflow boundary;

Backward facing step (Re=800)

Level values are -0.03, -0.025, -0.02, -0.015, -0.01, -0,005, 0,0. 0.05.
0.1.0.15.0.20. 0.25.0.30. 0.35.0,40.0.45.0.49.0.5.0.502.0.504

Xmax.15.0)

2,5 S.O X

Comparison of streamfunction

contours; effect of location of

outflow boundary; Backward

facing step (Re-800)



04

0.2

Y

0.0

Xmax-7.0
..... Xmax-15.0

Xmax-30.0
....... Gartlincj

.0.4

t 1 .

aO 2-5
-2.5 Vorticity

Figure 10. Comparison of vorticity profiles
at x-7.0; Backward facing step

(Re-800)

I0

Y

0

-5
0 5

Y axis scaled by a factor of 10

Figure 11. Multigrid levels;
facing step (Re-100)

Backward

Y

0

5
0

Y scated by a ;actor of l O

5 10 15 X 20 25 30

Figure 12. Multigrld levels; Backward
• facing step (Re=267)

75

.s.o .2.s o o X/H ;.S S0 _.S

Figure 13. Streamfunction contours;
Backward facing step (Re=132000)



ADAPTIVE EAGLE N 9 " 2 7 4:6

DYNAMIC SOLUTION ADAPTATION AND GRID

QUALITY ENHANCEMENT

Phu Vinh Luong

Naval Oceanographic Office

Stennis Space Center, MS 39529

J. F. Thompson, B. Gatlin, C. W. Mastin, H. J. Kim

NSF Engineering Research Center for Computational Field Simulation

Mississippi State University

Mississippi State, MS 39762

In the effort described here, the elliptic grid generation proce-

dure in the EAGLE grid code has been separated from the main
code into a subroutine, and a new subroutine which evaluates sev.

era] grid quality measures at each grid point hes been added. The

elliptic grid routine can now be called, either by a CFD code to gen-

erate a new adaptive grid based on flowvariables and quality mea-

sure, through multiple adaptation, or by the EAGLE main code
to generate a grid baaed on quality measure variables through stat-
ic adaptation. Arrays of flow vadables can be read into the

EAGLE grid code for use in static adaptation as welL These major

changes in the EAGLE adaptive grid system make it easier to con-

vert any CFD code that operates on a biock-structurad grid (or
single-block grid) into a multiple adaptive code.

The requirements of accuracy and efficiency for obtaining
solutions to PDE's have always been a conflict in numerical meth-

ods for solving field problems. On the one hand, it is well known

that increasing the numberofgridpointsimpfies decreasing the lo-

cal truncation error. This, however, results in long computation

time due to large numbers of grid points. On the other hand, short.

er computation time can be achinved by dec_eadng the number of
gr/d poin_ but the result is a less aomrate solution.

Adaptive grid generation techniques are a means for resolving

this conflict. For many practical problems, the initial grid may not

be the beat suited for a particular physical problem. For example,

the location of flow features, such as shocks, buondary and shear

layers, and wake regions, are not known before the grid is gener-

ate& In multiple adaptive grid generation, grid points are moved

continually to respond to these features in the flow field as they de-

velop. This adaptation can reduce the oscillations esmciatedwith

inadequate resolution of large gradients, allowing sharper shocks

and bett_ representation of bonndmy layers. Thns it is possible

to achieve both effidency and high accuracy for numerical solu.

tions of PDE's. Several bask: techniques involved in adaptive grid
generation are discussed in Ref. (1).

In the earlier form of the adaptive EAGLE system (2, 3), the

coupling ofthe adaptive gridsystem with a CFD code required the

encapsulation of both the entire grid code and the CFD flow code
into separate subroutines, and the construction of a driver to call

each. Thin was inefficient that it included some unnecessary parts

of the grid code and required dgnifieant modification, and per-
restructuring, of the CFD code. In particular, the flow code

arrays and/or the grid code arrays had to be modified to be compat.
ible in stnumnl.

The conversion procedure is accomplished by adding the el-
liptic grid generation subroutine, and certain other subroutines

from the EAGLE g_l system that are involved in the elliptic grid
generation pmcem, to the flow code. The CFD code may then call

the elliptic grid generation routine at each time step when a new

grid is desired. The CFD code passes its current solution to this

EAGLE routine via a scratch file. This structure eliminates the

need for compatibility between CFD and grid arrays. One restric-

tions is that the initial grid must be generated by the EAGLE sys-

tem, or be processed through that system. This provides the neces-

sarypurameters and structural information to be read from files by
the adaptive EAGLE routine.

In the present work, the control function approach is used as

the basic mechanism for the adaptive grid generation. The static

and multiple adaptive grid generation techniques are investigated

by formulating the control functions in terms of either grid quality
measures, the flow solution, or both.

Prevlomwork (2,3) with the adaptiveEAGLE system_owed
the grid to only adapt to the gradient of a vat/able. The work de-

scribed here has extended this adaptive mechanism to also allow

adaptation to the curvature of a variable or to the variable itself.

The system provides for different weight functions in each coordl-

uate dire_on. In addition, the mechanbm now includes the abil-

ity to calculate the weight flmctions as weighted averages of weight

functions from several flow variables and/or quality measures.

This allows the adaptation to take into account the effect of many
of the flow variables instead of just one. The construction of the

weighted average of flow variables and quality measures, and the

choice of adaptation to gradient, curvature, orvariable, are all con-

trolled in each coordinate directions through input parameters.

The quality measures now ava/]able in the EAGLE grid system are

skewness, aspect ratio, arc length, and smoothness of the grid.

These gr/d quality measures,and the resulting control and weight

function values, can be output for graphical contouring.

ADAPTIVE MECHANISM

Contro! Function Arm .r_el _

The control function approach to adaptation is developed by

noting the correspondence between the 1D form of the system,

xu+ ez, - o (1)

and the differential form of the equidistnlmtion princ/ple,

Wx t - constant,

wxu + wet, = 0 (2)

where Pis the function to control the coordinate line spacing, and
Wis the weight function.



From (1) and (2) the control function can be defined in terms
of the weight function and its derivative as

!' w, (3)='W

This equation can be extended in a general 3D form as

Wi J

p, . -_. (4)

This approach was suggested by Anderson (Ref. 4, 5), and has been
applied with success for 2D configurations by Johnson and
Thompson (Ref. 6) and for3D configurations by Kim andThomp-
son (Ref. 2) and by Ta and Thompson (Ref. 3).

The complete generalization of (4) was proposed by Eiseman
C_f. 7) as

PI = gg Wt
j-I

where wt is _ewei-gh-t -_'fion chosen for the _' direction. This
definition of the control functions provides a convenien t means to
specify three separate control f_mctions, with one in each coordi-
nate direction ...............

In order to preserve the geometrical characteristics of the ex-
isting grid, it is practical to construct the control functions in such
a manner that the control functions defined by (5) are added to the
initial set of control functions obtained from the geometry, i.e.,

ei = (r_,+ c_P_, i - 1,2,3 (6)

where

(P-_. : control function based on geometry

(PJ. : control function based on weight function

In these equations the weight function Wean be computed by

different_ormulas for di_erent adaptive mechanisms:

Adaptation to

Var/ab/¢ : W - 1 + lYl

Gradient : W .. 1 + IVVI

Curva:ure : W = (l_+fl_),/1 +alVVP

(7)

where Vcan be either a flow solution variable or a grid quality mea-
sure. Here a and fl are on the range 0-1, and

. V'V (8)

is thecurvatureofthevariable V.

Using these definitions of the control function& the elliptic
generation system becomes an adaptive grid generation system.
This system is then solved iteratively in adaptive EAGLE by the
point SOR method to generate the adaptive grid.

Grid Oualitv Measures

The objective of this part of the investigation was to develop
a means of evaluating grids through the computation of certain
grid properties that are related to grid quality and to develop tech-
niques for estimating the truncation error. Following Kerlick and
IGopfer (Ref. 8), and Gatlin, et. al. (Ref. 9), the grid quality mea-
sures are taken as skew angle, aspect ratio, grid Lap]acian, and arc
length. Techniques for estimating the truncation error due to the
work of Masfin (ReL 10) are also included. At each grid point in
a general 3D grid, each property can have three values associated
with the three directions. The approach taken in this investigation

is to treat each surface of constant _' separately for ease in graphi-
cal interpretatio_

The minimum skew anglebetween intersectinggridlinesis

oneofthemastimportantmeasurablegridproperties.Thisangle
canbe expressedintermsofthecovariantmetricelementsas

Since&n = &,,, &n = &31and&a " g,. the three skew angles
associated with each grid point in a 3D grid are 0:_ O= and _i.

Since aspect ratio is the ratio of the length of the sides of a grid

cell, it can he defined in two different ways. For exampie, on amr-
face of constant $t, this ratio can be expressed in terms of metric

elements gj and gn as

AR, = _ (lOa)

or

Large changes in aspect ratio of grids from one part of the field to
another may inhibit theconvergence of viscous flow solutions to
a steady state.

Iamctm

A useful measure of the smoothnem of a grid is the Laplacian
of the curvilinear system, V_ r, i - 1,2,3, which is simply the
rate of change of grid point density in the grid. For a perfectly uni.
form grid, the grid Laplacian would vanish everywhere, but ex-
ceedingly large values may arise in highly stretched grids. The
mathematical representation of the gi'id Laplacian is defined in
terms of the contravariant metric elements 8e, the contravariant

base vectors a t and theposition vector r as

V_ " - t t &_ ar " r_ e = 1,2,3 (11)
/ml 1-1

iur..lmgth

Another important measure of the grid quality is the local rete
at which grid spacing changes. On a coordinate surface of constant
_, and along a coordinate line of constant _z the grid spacing can
be defined as



_' (12a)d_ .. [Oc_._- x_ _ + CYI.I - y,f + (:,÷_ - z_2]:

The normalized rate at which grid spacing changes (ARCL) is then

d_ - dr_ l

(ARCL), .. ½ (d,+ d,-t) (12b)

The objective of this section is to present heuristic error esti.

mates which give order of magnitude appro_dmations for the
truncation error and the solution error in the numerical solution

of the ELder equations for compressfl_le flow and other systems of
conservation laws. Any conservation law can be written in a gener-
al formu

u,+f, + g, + h, = 0 (13a)

The transformation of this system to an arbitrary curvilinear coor-
dinate system is

U, +F O + GO + HO - 0 (13b)

where v/gis the Jacobian of the transformation and

Let h be the spacing of the fine grid, and nh be the spacing of the
coarse grid. Let L, be the difference appro0dmation operator on
the fine grid, and L,, be the difference approximation operator on
the coarse grid. Then the finite difference appro_dmation of the
PDE can be represented on the fine grid as

-, + f, + &, + h, .. Lh(F,(;,//)+ T(hy' (13c)

and on the coarse grid as

u, + .,'.+ &, + _, = L,,,(F,6,.V)+ T(m_y' (13d)

where n is an integer.

From (130 and (13d), the estimate of the truncation error on
the fine gridcan be computed as

T(h)'- _ (14)

A similar procedure can be used to compute the error in the
numerical solution. Such a procedure has long been used in the
numerical solution of ordinasydi_erential equationsand is re.
ferred to as Richardson extrapolation. Even though numerical
solutions must be computed on both fine and coarse grids, the er-
ror astimates which result do not have the large peaks at solution
singularities which can be encountered with the truncation error

computed from difference approximation of higher derivatives.
Thus the solution error estimates may sometimes be more useful
intheconstructionofadaptivegrids.

Assume that there are two numerical solutions oforderp ac-
curacy for (13b) that have been computed on a fine grid and on a
coarse grid, with grid spacing h and nh, respectively, in each coor-
dinate direction. Assuming that the samepth order method is used
in both cases, then the relation between the two numerical solu-
tions and the actual solution u of the PDE can be established as

u - U, + R(h_ (15a)

and

u = u..+ R(,_), (15b)

From these equations, an ex_rapolatedvalue ofu can be computed
ItS

n, u, - u_, (15c)
u ,, (re - I)

Thus the estimate of the error in the numerical solution computed

on the h grid is:

U, - U. (15d)u - u, - (wT'#---'iT-

RESULTS AND DISCUSSION

The adaptive grid generation system based on the control
function approach as described in the previous chapters has been
used to generate static and multiple adaptive grids for several ge-
ometries (Re£ 11). Some of these results are presented in this sec-
tion. The static adaptive gridswere obtained by adapting the initial
grids to either grid quality measure variables or to existing flow
solution variables. The multiple adaptive procedure was tested on
several different configurations with the adaptive MISSE Euler
flow code (Ref. 12) for transonic and supersonic flow cases, and
with the adaptive INS3D flow code (Ref. 13) for incompressible
flow.

Adaptation to Oualltv Measures

Some examples of the grid quality adaptation are shown in
Figure 1 for adaptation to various quality measures. (In Ref. 11,
color contour plots of the quality measures and the other adaptive
features are given.) Figures 2a-d shows the difference of the av-
erage skew angle between the initial and adaptive grids. The same
number of total adaptive iterations were run in each case. The
control fonctiom were updated based on the geometry of the pre-
vious grid, rather than the initial grid, at each adaptation.

Comparison of Figure lb with Figure la shows that adapta-
tion to the skewness is effective in reducing the skewness in one re-
ginn, while increasing the skewness in other regions of the grid. A
small improvement in aspect ratio occurs, but the smoothness of
the grid is decreased.

Comparison of Figure lcwith Figure laindicates that adapta-
tion to aspect ratio does improve both aspect ratio and smoothness
of the grid; the skewness is increased, however. Comparison of

Figure ld with Figure la shows that adaptation to smoothness im-
provas the skewness and aspect ratio of the grid effectively, but the
adaptive grid is not as smooth as the initial elliptic grid.

Figure le shows the beneficial effect of including adaptation
to aspect ratio, arc length, and smoothness, with adaptation to
skewness: the skewness is reduced more by the combination than
with skewness adaptation alone. A little improvement occurs in
aspect ratio; the smoothness of the grid does, however, decrease.



Resultsfrom these examples show that the adaptation to the
combination of all grid quality measures, or to each individually,
can improve some grid properties while damaging others. For ex-

ample the adaptation to the Lapiacian of tiffs particular grid can
reduce the skewness, hut the resulting adaptive grid is not as
smooth as the initial grid. The choice of the adaptive variable for
the adaptation very much depends on what property of the grid
needs to he improved and the configurations of the grids.

Malth_tmt_e

Results of multiple adaptation performed with the adaptive
MISSE Euler flow code are shown in Figures 3-8. In all these

plots, NIT is the total number of time steps, INT indicates the
number of time steI_ at which the first adaptation is performed,
NCL is the number of time steps between each adaptation, and
1_ indicates the number of time steps at which the last
adaptation is performed, Values of weight functions
(AWT,, AWT_, weight coefficients (Ct, C_), adaptive variables
density (RHOt, RHO_ presm_ (PRE$ t, PRE$2) ate given for
the _ and the _z directions, respectively. For example,
AWq" = GRAD, CURV, Ct " O. 5, C3 " O. 3, RliO = 1,0,

PRE$ - 0,1 and a = 1, _ = 1, can be interpreted as adapta-
tion to the density gradient in the _t direction with Ct - 0.5,
and to the curvature of the pressure in the _z direction with

C=-0.3 with coefficients of gradient and curvature

a - 1, p = I, respectively.

double wedge (._unermnie Euler)

Results obtained from a supersonic flow at Mach - 2 over fine
(121 x 41) and coarse (81 x 31) double-wedge grids are shown in
Figures 3- 7. Figure 3 shows the pressure contours obtained from
300 time stepson the initial and adaptive grids (121x 41). The grid
was adapted to the density gradient in the flow direction (RHO =
1,0) with Ct = 0.7 and to the pressure gradient in the normal
direction with ¢: - 0.5. A total of 4 adaptations was used for
this case, with control functions updated from the previous grid.

Figure 4 shows the pressure coefficients on the lowerwall, and
convergence histories of the two solutions are shown in Figure 5.

In Figure 5, the high peaks at each adaptation are due to the use
of the previous solution on the new adapted grid without integra-
tion onto the new grid. From these figures, clearly the adaptive
grid gives a much better representation of the shock regions as well
as the expansion regions. Shocks are much sharper for the solution
obtained on the adaptive grid. A record of the CPU time on an
1RIS 4D/,t4OVGX machine shows that the total CPU time for the
initial grid (121 x 41) without adaptationwas 1481.51 CPU seconds
and for the adaptive grid (121 x 41) was 1599.02 CPU seconds, an
8% increase.

Contourplotson the pressure of the initial fine grid (121x 41),

the initial coarse grid (81 x 31), and the adaptive grid (81 x 31) are
shown in Figure 6. The coarse grid was adapted to the combina-
tion of dans/ty and pressure in _t direction, with weight coefficient
Ct = 0.5,andtothegradientofthiscombinationin _*direction

withweight coefficient C, = O. 5, (,4WT = VAR, GRAD, RHO =
1,L PRE5 = 1,1).

Different adaptive mechanisms applied to the coarse grid in
the multiple adaptation proce_ are shown in Figure 7. Figure To
shows the presmn_ contours obtained on the adaptive grid of Fig-
ure 7a.The initial grid was adaptedto the curvature ofthecom-

binationof density and preasure in both directions (A WT = CURV,
CURV, RHO = 1,1,PRES = 1,1). The total number of adaptations
was4withC, = 0.7, Ca = 0.7. Thecoefficientsofthegradi-
ent and curvature were a .. 1 and _ = 0.5, respectively, and

the updates were from the original control functions.

Figure 7d shows the pressure contours obtained on the adap-
tive grid of F'qwre 7c. The adaptative mechanism for this case was
premm_ gradient in both directions with C| = 0.7, Ca " 0.7
and total number of adaptations was 4, (A WT = GRAD, GRAD,
RIIO = 0,0, PRES = 1,1).

The initial grid, adapted to the gradient of the combination of

density and pressure in the _2 direction only is shown in Figure 7¢.
Totalnumberofadaptationswas5with C1 - O, C 2 = 0.9,and
updates were applied to the pre_ous control functions. Pressure
contours obtained from this adaptive grid are shown in Figure 7f.

From these figures, the representation of the shocks on the
adapted coarse grid is much sharper and closer to the fine grid
solution than the nonadaptive coarse grid. The total CPU time for

obtaining 300 time steps solution for the adaptive grid was approx-
imately 800 seconds for each adaptive mechanism, nearly50% sav-
ing time compared to that of the fine grid.

The adaptation to the combination of density and pressure in
*direction and to the gradient of this combination in _: direction

of Figure 6 gives a smoother behavior of the pressure coefficient
behind the shock than the adaptation to the gradient of pressure
alone of Figures 7cand 7d. The adaptation to the curvature of Fig-
ures 7a and To givesa better result, however with a little over pre-
diction of the pressure coefficient right behind the shock. The
adaptation to the gradient of the combination of the density and

pressure in _ direction only in Figures 7e and 7f gives the closest

solution to the fine grid solution.

From these results, clearly multiple adaptive grids produce a
better representation of the shock regions, asweli as the expansion
regions, than that of the same nonadaptive grid. Among these
adaptive mechanisms, the use of the better results than the use of
single variable. Another advantage that shonldbe mentioned here
is the controlling of the direction in which adaptation is applied.
As shown above, the adaptation in Onlyone direction (_2) gives the
closest solution to the fine grid solution. Moreover, the grid in this

adaptive mechanism is not being disturbed as much as by the
adaptation in both directions. The minimum skew angle for this
case is higher compared to those of adaptation in both directions.
Of course, this is true only for a certain number of adaptations and

a particular value of weight coefficients.

Results from the supersonic flow at Mach., 2 in a wind tunnel
are shown in Figure 8. These results were aim obtained in 300 time
steps. Figure 8a is the initial grid, Figure 8b is the adaptive grid
adapted to the error estimation inboth directions, and Figure 8c
is the adaptive grid adapted to gradient of the combination of den-
sity and pressure in both directions. The number of adaptations
was 5 for both cases, with Ct = 0.6, Ca = 0.55 for the
adaptation to gradient of the combination. Shocks are much
sharper for solutions obtained on the adaptive grids than on the
nonadaptive grids for this configuration in supersonic flow as well.

Results from these examples show that multiple adaptive grids
captured very well major features of the flow field in supersonic
flow for these particular configurations. The adaptations to the
combination of the grid quality measures, soch as skewness of the
grid and the flow solution, for these particular grids not only make
the grid more skewed hut also resulted in poor resolution of the
major features of the flow field. On the other hand the adaptation
to the error estimation and the use of the weighted average in

weight functions computed from several flow variables does, in
fact, improve the solutions.

The computation of the weight functions and the choice of the

adaptive solution variable are independent from one direction to
another thus enabling the usersto have more freedom in choosing

suitable adaptive mechanism for each kind of flow. For example,
in the case of boundary layers and shocks occurring inthe same
flow field, the users may choose to adapt the grid to the velocity

magnitude gradient inthe normal directionto capture the bound-
ary layer regions and to the pressure gradient in the flow direction
to capture the shockL

baokward factnq ste n
0neonmressible Navier-Smkes)

Results of multiple adaptation performed with the adaptive
INS3D inc mpressible flow code are shown in F'qpu'es 9-12.
These results are obtained for incompresm'ble laminar flow for a

m



2-blockbackwar_facingstep,(gridsizeforthefirstblockis(21
x 35)and (81x 41)forthesecondblock).The Reynoldsnumber

used in this investigation for the backward facing step was 183.32
for comparison with experimental data,

The grid constructed for the backward facing step considered
in this case is the same as the geometry of the experiment, Howev-
er, the step length downstream of the grid is only 30 times the
length of the step height, while the step length for the experiment
was much larger. Figure 9c shows the velocity magnitude contours
obtained from 5000 time steps on the in/tial grid of Figure 9a. Ve-
Iocityvectors are shown in Figure 9b.. Figure 10 shows the velocity
magnitude, vorticity contours and velocity vectors obtained from
5000 time steps on the adaptive grid. The initial grid was adapted
at 500 and 1000 time steps to the vorticity magniUuie in the direc-
tion normal to the walls with Ct = 0, Cz ", I, (AWT = VAR,

VAK VORR = 0,1). _/bUd number of adaptations was 2 for this
case, and updates were applied to the initial control functions.

Skin friction coefficients on the lower and upper walls (begin-
ning at the step) obtained from initial and adaptive grids are
plotted in Figure 11. Velocity profiles at the step and several loca-
tions downstream (nearest to the experimental dam) along with
digitized experimental data are shown in Figure 12.

Results fzom these figures show that the velocity profiles ob-
tained from the adaptive grid are closer to the experimental data

than for the nonadaptive grid. However, there are some wiggles
of the skin friction coefficient obtained from the adaptive grid oc-
curring at the separation region of the lower wall This may be due
to the redistnl_ution of grid spacings in this region. Digitlzed vni-
ues of the reattachmem length from Figure 11 are approximately

7.67 for both solution& while the experimental value was 7.9 for
this particular Reynolds number. The difference of these values
may be due to the difference of the step length of the experiment
and the grid downstream.

A record of the CPU time oa a Oay 2 machine shows that the
total CPU time for the initial grid without adaptation w_ 25956.26
CPU seconds and for the adaptive grid was26363.74 CPU seconds.
Since there is only 2 adaptive iterations the inereue in time for this
caseis1.2%.

180 de m-ee turn around duct
(incompressible Navier-Stokes)

Most flow solvers for incompresdole flow require grid lines
which are packed closely to the walls in order to resolve the bound-
ary layer regions. This results in a large number of grid points and
hence long computer times. The multiple adaptation can be used
to reduce the cost of computer time by allowing the use of acoarser
grid. In the present investigation, a fme grid (111 x51) with spacing
off the wallsof 0.002 and a coarse grid (111x 31) with spacing0.004
off the walls are considered for the turn around duct. The result
of the adaptation on the coarse grid is compared with the nonadap-
tire fine grid solution, while the Reynolds number for the turn
around duct was 5{]0. Results obtained from 6000 time steps on
fine, coarse and adaptive grids for turn around duct are shown in
Figures 9-18.

Figure 13 shows the velocity magnitude contours obtained on
the initialand adaptive grids. The initialommm grid was adapted
to the velocity magnitude gradient at 1000, 1500, 2000 and 2.500
time steps, in the direction normal to the flow direction, (,4 WT -
GRAD, GRAD, VOMA = 0,1). "[bUd number of adaptations was
4 with Cs - O. I, C2 = O. 5, and the updates were applied to
the initial control functions. Figures 14 and 15 show the skin fric-
tionaad pressure mef:f_enmof the inner and outerwallsobtained

coarse, fineand adaptive coane _-ide.

Figure 14 shows that the behavior of the slda frktion cocffi-
ciants for the adaptive grid are much dcser to the fine grid solution
than the nonadaptive coarse grid. Figure 15 shows that the adapta-
tion for this case did not help significantly in the improvement of
the pressure coefficients, however.

Figure 16 shows the velocity magnitude contours obtained on
the initial and another adaptive grid. The initial coarse grid was
adapted to the combination ofvorticity and quality measure aspect
ratioofthe grid in the direction normal to the flow direction, (A WT

•, VAR, YAP,, VORR ., 0,1, ASPE = 1). Here
C_ = 0.3, C2 = 0.5. Figures 17 and 18 show the skin friction
and pressure coefficients of the inner and outer walls obtained

from'coarse, fine and adaptive coams gridr_

Figure 17 shows that the behavior of the skin friction coeffi-
cient of the outer wall is almost identical to that of the fine grid.

The representation of the skin frictionofthe innerwallis smoother
than that of the nonadaptive grid but with a large change after the
separation region toward the outlet of the duct Figure 18, again
indicates that the adaptation did not help in the improvement of

the pressure coefficients for this case either.

A record of the CPU time on an IRIS 4D/440VGX machine
showt that the total CPU time for the initial grid (111 x 51) was
23870.61 CPU seconds and for the adaptive grid (111 x 31) was
approximately 13800 CPU seconds for each adaptive mechanism.
From Figures 13 and 16, it can be seen that in both adaptations the
gt'/ds get finer at the turn. Correspondingiy the skin friction coc ffi-
cleats obtained from adaptive grids have higher pick at the turn
and capture separation region well, as shown in Figures 14 and 17.
Moreover, the reattachment point obtained from adaptive grid of
Figure 14 is closer to that of the fine grid than the adaptation of
Figure 17 and the non-adaptive grid.

The widely-used EAGLE grid generation system (Ref. 14)
has been extended and enhanced so that it can be readily coupled
with existing PDE solvers which operate on structured grids to pro-
vide a flexible adaptive grid capability. The adaptive EAGLE grid
code can be used for generating not only algebraic grids and ellip-
tic grids but static adaptive grids as well. In the static adaptation,

the grid can be adapted to an existing PDE solution or to grid qual-
ity measures or to a combination of both. The test cases show that

some grid properties can be improved by the static adaptation to
grid quality meamres.

In this study, the weight functions can be formulated as
weighted average of weight flmctious from several flow variables
or several quality measures or the combination of both. Different
weight funetiom and adaptive variables can be applied in each
direction. These operations are controlled through the input pa-
rameters in static as well as multiple adaptation mode.

There are several succesafui incorporations of the adaptive
EAGLE packed subroutines into flow codes, including INS3D
from NASA Ames and the MISSE Euler solver developed at Mis-
s/sslppi State University. Several conflgnratior= are considered
for each of these adaptive flow codes for the investigation of the
new weight/_mctions formulations and grid quality measures in
the multiple adaptation.

Results obtained from the adaptive MISSE Elder flow code
show considerable so_.eu as measured by improvements in shock

resolution on coarse grids in the compress_le flows. Some success
has been made "incapturing separation regions on coarse grids of
the adaptive INS3D flow code in incomprem'ble flows, For further
study, the interpolation of the previous solutions to the new

adapted grids would be recommended, especially for the adaptive
INS3D flow code and the implementation of arbitrary block
adaptation in multi-block configurations.
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Abstract

The MATRICS flow solver calculates the

inviscid transonic potential flow about a wing/body

seml-configuration. At present, work is in progress
to extend MATRICS to take viscous effects into

account through coupling with a boundary layer

solver. This solver, MATRICS-V, is based on robust

calculation methods for the boundary layer, the

outer wing flow and their interaction. MATRICS-V is

intended for (inverse) design purposes. The

boundary layer and wake are based on an integral

formulation of the unsteady first order boundary

layer equations, the inviscid method is the

existing MATRICS potential flow solver and the

interaction algorithm is of the quasl-simultaneous

type.

The paper gives a progress report on the

coupled potential-flow boundary-layer method for

transonic wing/body configurations.

i, Introduction

Computation methods for three-dlmenslonal

transonic potential flow are an important component

in design systems for civil aircraft wing/body

configurations. Accurate performance prediction

under these conditions (e.g. llft-drag analysis)

requires that the transonic potential flow solver

is coupled with a boundary layer solver to account

for the viscous effects on the wing pressure

distribution in a sufficiently accurate way. For

some years NLR has available its own developed

syptem MATRICS (Multi-component Aircraft TRansonic

Inviscid Computation System) for the calculation of

the three-dimensional inviscid transonic potential

flow about wlng/body configurations (Ref. I). The

MATRICS-derivative MATRICS-V -now under develop-

ment- will calculate the interaction of the

Inviscld potential outer flow and a viscous

boundary layer on the wing of a transonic transport

winK/body configuration. The ultimate objective of

the development of MATRICS-V will be the embedding

of this system in a wing design system, also

currently under development at NLR.

This paper gives a progress report on the

development of MATRICS-V. Firstly, a description

will be given of the MATRICS three-dimensional

transonic potential flow solver, being the starting

point for the development of MATRICS-V. Secondly,

N93-27416N

formulated. Robustness of the interaction algorithm

has been formulated as the main requirement. Next,

the basic concepts of the viscous-lnvlscld

interaction solver will be given. Subsequently, a

short system overview will be given of the MATRICS-

V flow solver, followed by an analysis of the

boundary layer equation system and on the inter-

action law. Finally, some preliminary computational

results will he presented.

2. Startin_ positlon for the

development of MATRICS-V

The MATRICS-V viscous-invlscid interaction

solver is a follow-up to the MATRICS three-

dimensional inviscld transonic potential flow

solver. This flow solver solves the full potential

equation in strong conservation form on a grid of

C-H or C-O topology. This grid is generated using

the MATGRID grid generator (Tysell and Hedman,

Ref. 2). The solver uses a fully conservative

finite volume dlscretlzation and a multigrld

solution method. The dlscretlzation scheme is

second order accurate in the mesh size in subsonic

parts of the flow, and first order accurate in

supersonic parts of the flow. For the capture of

supersonic/subsonlc shock waves a Godunov-type

shock operator is used. Options for fully-

conservative as well as non-conservative shock-

capture are available. Details on the MATRICS flow

solver can be found in references 3, 4.

MATRICS provides data for a lift-drag-dlving-moment

analysis. Substantial research has been performed

on the reliable prediction of drag by the MATRICS

flow solver. Findings of this research have been

reported in reference 5.

The development of MATRICS-V is partly based

on experience at NLR with the modelling of two-

dimensional strong viscous-inviscld interaction on

airfoils (Refs. 6, 7).

l__K_mai_mmum

MATRICS-V is designed to calculate the

influence of the wing boundary layer and wake on

the invisoid potential outer flow about a given

transport-type wing/body configuration from

subsonic up to and including transonic cruise

conditions. Laminar as well as turbulent boundary

layers should be calculated, where the turbulent

boundary layer is allowed to be mildly separated.

the requirements
viscous-inviscid

*) This research has been performed under

contract with the Netherlands Agency for

Aerospace Programs (NIVR 01802N)
**) Research scientist, Num. Math. and Appl. Prog.

Dep., Informatics Division

***) Research Scientist, Theoretical Aerodynamics

Dep., Fluid Dynamics Division

for the development of the The MATRICS-V method should be robust; a guaranteed

interaction solver will be _ converged solution should be obtained for realistic
flow conditions. The method should also be about

ten times faster than a three-dimenslonal Reynolds-

averaged Navler-Stokes solver, to enable wing

design applications.

4, Basic contents

The Coupling of an invlscid outer flow with a

viscous boundary layar flow will be done using an



Integral method formulation of the boundary layer

equations. With integral methods there is no

explicit formulation of a turbulence model, but the

system of equations is supplemented by suitable

empirical closure relations. The integral method is

reasonably easy to implement, because in the

integral method the three-dimensional flow problem

is formulated as a two-dimenslonal problem on the

wing surface and the wake center-surface. This is a

great advantage in code development.

Until a few years ago, the boundary layer

equations have always been used in their steady

form to compute a steady boundary layer flow. The

main advantage of this formu, lation over an unsteady

formulation has always been its lower computation

time. However, using the boundary layer equations

in their unsteady formulation, integrating them

towards a steady solution, the boundary layer

method is particularly well suited for

vectorizatlon and hence for implementation on

todays supercomputers, see Van Dalsem and Steger

(Ref. 8), Swafford and _hltfleld (Ref. 9). An even

more important advantage of using the unsteady

boundary layer equations for solving steady

boundary layer flow is the robustness of this

approach. With the unsteady formulation a simple

time-lntegratlon scheme will in any case produce an

unsteady answer. With the steady formulation a

space-marchlng scheme has to be used and the

specification of initial data proves to be more

difficult in a space-marchlng scheme than in a

tlme-lntegratlon scheme. Also in case the steady

boundary layer solution is non-unlque or non-

existent, the solution produced by an unsteady

formulation is probably more useful, than the

solution produced by a steady formulation.

Two candidate interaction algorithms have been

considered, namely the semi-inverse and quasi-

simultaneous algorithm. (The more sophisticated

simultaneous algorithm is too expensive to

implement in MATRICS because of the fully implicit

relaxation algorithm employed in the existing

Inviscid potential outer flow solver). Experience

by Ashill e.a. (Ref. i0), pp. 35, end Cebecl, Chen

e.a. (Ref. II) indicates that the semi-inverse

algorithm lacks robustness in difficult flow cases.

Therefore the quasl-simultaneous interaction

algorithm is used, being the best available

interaction algorithm that can be implemented in

interaction with the invlscld potential outer flow

solution algorithm.

In the inviscid potential outer flow solver

the "blowing velocity approach" is used to account

for the boundary layer effects on the inviscid

outer flow, which means that a source strength is

specified at the body surface and a Jump In source

strength at the wake. This approach is reasonably

standard, while experience by Chen, Li e.a.

(Ref. 12) reports that this approach is more

reliable than the boundary layer displacement

approach.

Experience by Chow (Ref. 13) indicates that it

is mandatory to prescribe the pressure Jump across

the wake as a boundary condition to the outer

inviscid flow. The latter Jump influences the Kutta

condition prescription in the outer inviscid flow,

and this is essential in order to compute realistic

lift values for the wing. The pressure Jump across

the boundary bayer is computed as in Chow (Ref. 13)

and Lock and Williams (Ref. 14).

5. Descrlotlon of the calculation method

5.1 Inviscid method

The full potential equation

(pu')= 0,
ax i

(I)

u t i + a_- u® -- , (2)
ax i

qZ = (u:) 2 + (u2) 2 + (u3) 2 ,

i

p ,_. 7-I 2 }_'_-i (4)_-_(1-q2) _ ,

is solved using a finite volume discretization

formulated on a curvillnear coordinate system and a

multlgrid method employing ILU/SIP sm06thlrig_: A_

present only seml-confiEuratlons can be considered.

(3)

The boundary conditions are:

• on wetted surfaces un - qS; (5)

for the inviscid flow solver, the source

strength S - 0 on the body, else S is computed

by the boundary layer solver;

• in the symmetry plane u, - O, (6)

• in the far-fleld, except downstream, _ - O, (7)

• in the far-field downstream (Trefftz-plane)

8z_ O, (8)

where (_ is the chordwise (wrap-around) grid

coordinate,

• across the prescribed vortex sheet

[ql - _
[p_l" q - q ' (9)(pqS)" - (pqS)- ;

for the invlscld flow solver the Jump across

the wake, (.)+ - (.)', is computed by the

boundary layer solver,

• across the C-O topoloEy branch cut that

extends from the tip section to the far-fleld

lateral boundary

[_I- O, _u.I - O. (i0)

5.2 Viscous method

The steady first order boundary layer

equations, describing conservation of mass and

momentum in a general right-handed coordinate

system, can be found In Myring (Ref. 15). Adding

tlme-dependent terms and using first order integral

thicknesses, the boundary layer equations can be

integrated with respect to z (normal to the wing

surface or wake centerllne), using the momentum

equation in z-dlrection to eliminate the pressure.

Then the integral equations are obtained in the
form

x-momentuR:

1 a6_

at _z at -

=

=



1 ash ÷ 011 ___ + kl

hl _x [_ qSX Jax

(11)

+ ....1 a01,?. + 812 + ÷ k3 +

h 2 8y [ h 2 q 8y J 8y

1
+ e22k2 - _C_z;

z

y- momentum:

[_ ; _2_] a_i a62_ ; a6_÷ (1__)62÷ ,.-- +
at _ at - jar

i ae21 ÷e2112.__.21a'_ I a [.J]+

h_ ax [ h_ _ ax _ _ [_j 1,j •
(12)

+ ....1 80z_ + 02 z + + Iz +

h 2 ay [ hz q ay Jay

_I_ 1_u. +

1 .

+ enl i - _Cz z ,

entrainment:

]. f_j._.a,--_,'_Jl 8t(6-6') -J--_Mm(6-6.)a--_ ÷O-q Ot 0-_(_6:q61)1+

t_2 jj _Lhlax hqa-_ _ -c,.

(13)

where q is the velocity, J is the Jacobian of the

transformation from physical to computational

space, and overbars denote boundary layer edge

values. The density thickness 6p is the integral of

(p-p)/p over the boundary layer.

In the latter equation (13) the instationary

entrainment coefficient is an extension of the

unsteady two-dimensional definition as used by

Houwink (Ref. 16).

Subsequently an expression is needed for the

calculation of the non-dimensional mass flux S

through the surface of _he wing and wake,

representing the displacement effect of the

boundary layer on the invlscld outer flow. Assuming

an invlscld flow between the stream surface z - 0

and the displacement surface 6", which is a stream

surface for the inviscld flow, the following

expression can be obtained from (13) by setting

6 -0:

S" _qj[ -_- -q "at _ + _y

(14)

this is equivalent to S - w/q, yielding the usual

interpretation of S in steady inviscid flow.

In the used body-conforming non-orthogonal

coordinate system the y-axis is in the spanwlse

direction of the wing, while the x-axis is in

chordwise direction wrapping around the wing and

the wake.

Next, a streamline coordinate system is adopted, in

which the variables (now denoted with tildes)

reduce to their familiar form, see Myrlng

(Ref. 15). Transformation to and from the stream-

line coordinate system is done whenever necessary.

Thus it is possible to derive equations using the

well-known integral parameters in streamline

coordinates and in the curvilinear system.

The equations (ii) to (14) are thus written in the

basic variables _11, H, q and C, where the cross-

flow parameter C is defined as

c - sign(_.)-_-_= (i5)

Reduction of the number of unknowns to the four

basic variables is established by prescribing a set

of turbulent velocity profiles in the streamline

coordinate system, while the density thickness 6p

is eliminated using the Crocco relation,

prescribing a parabolic distribution between

velocity and temperature (Ref. 17). For the time

being no velocity profiles are used, but proven

closure relations taken from accepted two-

dimensional methods for attached as well as

separated flow (Ref. 16, 18, 19) have been

implemented in a first version of the code. In a

next version, more physical closure relations and

velocity profile families will be used.

Initial conditions for the turbulent boundary

layer calculation are generated by the BOLA-2D

solver (Ref. 20), which calculates the laminar

quasl-two-dlmenslonal flow in the leading edge

region of the wing.

Boundary conditions are set at the wing root, where

derivatives in spanwise direction are assumed to be

zero, and the wing tip, where zero lateral derive-

tires in local sweep direction are prescribed, see

Cross (Ref. 21). Far downstream, a zero gradient

condition in chordwise direction is specified for

all quantities.



The system of equations (11) to (13) is solved

in combination with an interaction law (to be

discussed in the next section). The complete set of

equations can be written symbolically as

E
=u_ + Au x + Bu_ + Du = f, (16)

q

where u • [011, H, q, C].

The system (16) appears to be hyperbolic in

practice. Discretization is done accordlng to the

directions of the characteristics in (x,t) and

(y, t) -space, usin 8 a matrlx- split procedure

(Ref. 22). Thus equation (16) is dlscretlzed as

(17)
•^. •A- •B- ,u+B%u •Du-f.

q

In smooth parts of the flow second order accurate

dif£erencing will be obtaine_using a scheme as for

example in SpekrelJse (Ref. 23).

The system of equations (17) is solved usln 8 the

fully implicit backward Euler time-integration

scheme proposed by Stager and Warming (Ref. 24) and

Yee (Ref. 25).

5.3 Interaction law

In order to avoid a breakdown of the boundary

layer formulation -in separated flow reglons an

extra equation is needed which modifies the

inviscid flow boundary layer edge velocity _.

Usually a highly linearized form of the inviscid

outer potential flow is taken, for example the two-

dimensional Hilbert-lntegral formulation as used by

Veldman (Ref. 26). An even more simplified form is

given by Williams (Ref. 27). In this paper the

latter form is slightly modified, but still derived

from the linearized potential equation. This will

be discussed in more detail in section 6.2. In its

simplest form the interaction law can be written as

8q _ q_ S = 8J--t--_ S k. (18)
as _ [asJ _x_x

specified on the wing. Further downstream, a quasi-

simultaneous interaction algorithm is used. In this

formulation the invlscld flow calculatlon is done

in direct mode with a prescribed source strength S

on the wing and the wake and a prescribed velocity

jump across the wake. The viscous calculation is

done in quasi-simultaneous mode with a prescribed

inviscid wall velocity, which has been corrected

for boundary layer curvature effects. Thus the

boundary layer is computed effectively with a

prescribed edge velocity instead of the inviscid

wall velocity. Cehecl, Clark e.a. (Ref. 28) have

shown that such an approach avoids the initiation

of undesirable pressure fluctuations in the

trailing-edge region at reasonably large angles of

attack. The boundary layer computation computes a

new source strength S and velocity Jump Aq, which

are used as the subsequent input for the

interactive calculations.

_, Analysis of the system of eq_atlons

_,_ Analysis of boundary laver eouation system

To analyze the properties of the boundary

layer equations formulated in chapter 5 (Eqs. (I),

(2), (3), (18)) we assume the following simplifying

conditions:

• orthonormal coordinate system, i.e. hl-h2-1,

g-O; kl-kz-k_-O; 11-12-13-O;

• outer streamline aligned with the x-axis, i.e.

&14-1._/_,-o;
• closure conditions as in Cousteix and

Houdeville (Ref. 20), i.e.

O= " c(_1-eu), _21" -c_u,

e="-c2(_-o_), _2"-c,_. (19)

_ith H-_/_xl and HI-(6 -_t)/_11 we obtain

equation system

=_u_+A_ + Buy- f, u - [In_.,_,ln_,inC),
q

an

where

Time-dependent terms are obtained from the

instationary form of S (equation (4)), paylng

special attention to the limiting case for M _ O.

Two remarks are made:

i. Equation (18) is written along streamlines,

which implies chat the streamline directions

are known from the inviscld flow solver and

are kept fixed during a viscous calculation.

2. Equation (18) is a law in correctlon form,

indicating that it will not influence the

converged solution. In this way the

interaction law can be shown 6o be essential

to avoid breakdown of the boundary layer

formulation, but once convergence is obtained

it does not affect the final solution.

_.4 Viscous-inviscld interaction alzoritbm

The leadin_ edge part of the boundary layer

will be calculated in direct node using the program

BOLA-2D (Ref. 20). This presupposes that the flow

does not separate in this part of the boundary

layer. The tnviscid flow computation in this part

is done in direct mode with a source strength S

E-

I H - H(S+I)6 r l - H(_2-I) + _2_r(l_+l) 0 -]

H + NI " #r (_+l) H'I + I - _2(N+_I-_r(_+I) 0

, (20)
- Ki(_r+,)_h%l) - Rt(,_r) - (_l)(2_gi_q_rgt-M2_rKd) 0

fl _r + I H(I-N 2) + _q|r(_I+l) H

* - ,(21)

_t - Kt(|r+l) gd - gt_q_rO]_+l) 0

o 2-_2

|.

0

¢(S-I)

Lr+l

0

C(Lr+l)

(l._2)H+(_+l)_qCr44_2.2 Hi 1 1

(I-_2)H + (_+l)_qg r

0

; (22)



the parameter¢_0 at M-0 and

_= - _-___!r_2,
2

(23a)

_- 2 + (7-1)_2 (23h)

H - (H÷I)(I÷7:) - I, (23c)

HI - d%/cm. (23d)

Setting Kd-i and Ki-_/(#ax) in the third row of

eqs. (20)..(22) reproduces eq. (18).

Following Myring, reference

characteristics of an equation

16, the

Eu_ +Au x + f = 0, u = [u: ... u=]

can be obtained from

det(E-AA) - O, A = --.dr (24)
dx

We first consider the quasi two-dimensional flow

case (a/ay-o) where no interaction law is used,

i.e. Ki-O, Kd-l. This way we find the following

expressions for the characteristic directions A:

I = H, (25a)

-.[Az + ((H+I)H[-H_*I-(_+I)6#[)_ +

(25c)

For realistic H1(H)-functions, viz. with H{-H,_

the roots of the latter quadratic equation are

real. Consequently, the equation system is fully

hyperbolic. If H{<0 the values for _ are greater

than zero. At separation, that is at H{-O, in the

minimum of the HI(H) curve, one elgenvalue A passes

through zero, which means that the characteristic

direction changes from upwind to downwind there.

Consequently, the equation system models the

corresponding physlcalbehavlour.

We continue the analysis for the quasi two-

dimensional case (8/8y-0), but now for the case

where an interaction law is used to solve for Inq,

i.e. Kt*O, K_-I. In case Kt-l, _-O and _-0 we find

the following expressions for A:

A = O, (26a)

_ sH,
(26b)

((H÷I)2H[ - (H+I)H:) la + (_Hi (2H+I) (H÷l) +

÷ H I(2H÷3) - I) _ ÷ (H+l)(HI{I-HI) - O. (26c)

For realistic H:(_)-functions, namely with (H+I)H_-

HI<O end HH{-HI<O three values for A are positive,

one is negative. For small _<O it can be shown that

all values for _ are positive for all H, so that

now all characteristics originate from the upwind

direction.

For the case 8/8y*0 we find the following

characteristic directions in the x,y-plane

(A-dy/dx) :

• No interaction law (Ki-O, Kd-l):

A - O, (27a)

= H-l,
(27b)

H[A z + ((H-I)H_-HI(I+6,)+i+6 r) _ +

+ 1 + 6, = O; (27c)

as in the x,t-plane a characteristic direction

changes from upwind to downwind at separation

(i.e. at H{-O).

With interaction law (Ki*O, Kd-l) in case Ki-l,

W'=O, ,-0:

I - O, (28a)

(-(H+I)2H[+(H÷I)HI)A 3 + ((2H3+H2-2H-2)H[ +

+(-2H2+I)H_+H2+H+I)_ _ +

+((H_-I)H[+H_+H+2)_ + i = O;
(28b)

two positive and one negative value for A are

found in case of realistic H_(H)-functions.

The characteristics in the x,t-plane for the

more general case with an interaction law (Kt.O)

and without the additional settings Kt-l. MZ-O and

_-0 can only be analyzed numerically. We find the

following expressions for the characteristic

directions:

I = H, (29a)

a_A m + a2A2 + azA ÷ a o - 0, (29b)

where a m - Bet A and a 0 - det E.
A well-defined interaction law has the property

that as_O for all H. This gives the following

relation between K t and K_:

%> K_,
(_[-H,) (H÷I) -_/_H_ (H+I) +@_ (I-M _) -H_, (H+I)

(30)

if H{<O the value Kt-O may be chosen (direct mode).

If H{<O the value KI-O.OIK_ is suitable for all M_

and all _, in the sense that numerical computation

of A indicates that then for O<M_<I.7 ell values

for I are real and positive, while in some rare

cases complex values are found with a positive real

part. The boundary layer equation system (and

interaction law) have consequently favourable

properties for use in the transonic flow regime at
cruise conditions. Because all characteristic

directions generally _rlglnate from upstream,

initial conditions for _n, H, q and C have to be



specified upstream, while downstream no initial

conditions need be specified.

6.2 Pronertles of interaction law

Following Lock and Williams (Ref. 14), we

consider a source strength S approximately normal

to the surface, a velocity q approxlmately parallel

to the surface, and define a perturbation potential

as

Aq . 4,, AS - _,. (31)
q

The outer potential flow can be described by the

llnearlzed pertdrbatlon potential equation

(I-Mz)_,,+_,,- 0,

wlth_, = dS at z - O. (32)

In the context of the deflnlclon of an interaction

law we will Interprets Aq/q and AS as corrections

with respect to a starting solution, i.e.

_q - q-q_, AS - S-S k, (33)"

q q

where qk is given by the preceedlng outer flow

computation and Sk by the preceeding viscous flow

calculation. A solutlon to (32) in subsonic flow in

Fourier space is given by

¢ = CeJ"'e -$'" , ,B - _":"M_. (34)

Algebraic manipulation of (31), (32) and (34),

using the derivative of Aq/q with respect to s in

order to obtain non- imaginary quantities, then

leads to a law in Fourier space of the form

In physical space we may consider (35) as the

leading term in an integral form of an interaction

law and use it in this simplified form.

In supersonic flow only the right-running wave is

considered,

= Ca i,.e -iS,,. (36)

Manipulation now yields a non-imaginary interaction
law of r_he form

_ q_qk . _ (S_Sk) " (37)

q

Considering eq. (37) as the leading term of an

integral form of an interaction in physical space,

we now have a form of interaction law that couples

S to q instead of 8q/gs, which cannot be

incorporated in the system of boundary layer

equations in a simple way. The subsonic law (35)

appears however to produce useful results both in

subsonic and supersonic flow, which is mainly due

to the fact r_t strong interaction occurs in

subsonic parts of the flow (at supersonic-subsonic

shock waves and at trailing edges). This relaxes

Parameters are now introduced for the direct and

inverse parts of eq. (35):

_ [laq- 1 0_S1 "v_(S-Sk)'0Sqk (38)

The parameters K i and 1_ can be used to perform

direct, inverse and quasi-slmultaneous computations

as follows :

direct : K t - O, K d - I, (39a)

inverse : K t - I, K_ - 0, (395)

quasl-simultaneous: K t > 0, _ - i. (39c)

With quasi- simultaneous computations,

inspection of equatlon (3.8) shows that the

inviscld outer flow solution is modified locally at

places where S differs much from the previous

solution S k. In the first few iterations between

inner and outer solver this will lead to non-

physical velocity distributions in the boundary

layer, especially at the wake where a velocity

difference will occur be_een upper and lower side

for lifting cases, showing the deficiency of not

modelling the circulation in the interaction law.

The Inviscld flow solver will therefore have to

compute this circulation effect on its own.

Considerfng_the=_wo-dimensional steady form of

S and using the property of mass conservation along

streamlines in the outer flow, we will use in

eq. (38) :

s. --.86" (40)
as

It can now be observed that with Ki>O and Kd>O in

"equation (38) aq/Os has a positive correlation with

06"/8s, which is a desired property in subsonic
flow.

7. Prelimlnarv _9mputatlonal results

The MATRICS inviscid flow solver has been

tested extensively and appears to be a robust

method (Ref. 3, 4). In this section attention wlll

be given to the boundary layer solver with

interaction law and its robustness. Finally a fully

converged solution of the whole vlscous-invlscld

interaction computation will be shown.

Starting with an Inviscid velocity distribution

provided by the MATRICS outer solver, some

calculations have been made to obtain a converged

boundary layer solution only.

Initial values for the boundary layer parameters

were obtained from a two-dla_nslonal flat p%ate

solution. These calculatlons, without any inter-

action wlth the Invlscid outer solver, show the

changes made by the interaction law.

The first case is a NACA-O012 straight wing at

a Mach number of 0.70, zero angle of attack and

Reynolds number of 9 million. Only the root section

of t_he wing will be shown, because this section is

• symmetry plane with • two-dlmenslonal flow by

definition, and therefore allows comparison with

two-dimnaional mmthods. In figure la the tnviscid

velocity distribution at the root section is given.

It can be shown that the trailing edge stagnation

behaviour causes a severe boundary layer growth,

the need for an explicit_supersonic lav_ also leading to separation if no interaction law is used

considering the findings described in section 5.1. to adapt the velocity distribution. Figures lb, c,

We will therefore use eq. (35) both in supersonic d show the resulting velocity, momentum thickness

and subsonic flow. and shape factor H at Reynolds nmaber of 9 million,



calculated with interaction factor Ki-O.05. The

resulting velocity distribution shows smaller

decelerating velocity gradients and a less severe

stagnation behaviour at the trailing edge. In order

to obtain a physically relevant viscous solution,

the outflow, computed from this very first boundary

layer solution, can be added to the full invlscid

flow solver for an adjustment of the inviscld flow

to the boundary layer effect. A fully converged

vlscous-invlscid solution requires a number of such

interations between the inviscid flow solver and

the boundary layer/interaction law computation.

The second case is the same straight wing at

Math number of 0.799, .angle of attack of 2.26

degrees, and a Reynolds number of 9 million. The

inviscid velocity distribution at the root section

(Fig. 2a) will certainly cause separation on the

upper side of the wing. Starting from a very simple

flat plate momentum thickness distribution, large

changes must be expected in the velocity gradients.

In this case, the resulting momemtum thickness at

the trailing edge is much below the viscous-

Invlscid converged value, due to the changes in

velocity distribution, while the shape factor H is

only showing separation just behind the shock wave

(Fig. 2h, c, d). In the viscous-invlscid converged

solution separation will probably occur from shock

to trailing edge (Ref. 297. The non-physlcal

velocity jump across the wake (Fig. 2b) is due to

the asymmetry of the computed flow and the

simplicity of the interaction law. In the iterative

process between the full invlscld flow solver and

the boundary layer/interaction law, however, the

errors due to the simplicity of the interaction law

should disappear, resulting in a converged solution

and an inactive interaction law.

Figures 3a and 3b show the convergence

histories of the residuals of the x-momentum

equation, entrainment equation and interaction law

of the boundary layer equation system for the

testcases presented in figures 1 and 2. Using the

same computational parameters, both convergence

histories show a robust convergence, which means

that a converged solution can be computed even when

the invlscid flow velocity distribution and the

starting solution for the boundary layer flow do

not at all fit together.

At the time of writing of the paper, work on

the interaction algorithm was making good progress.

A first fully converged interacting solution has

been obtained for the attached flow around the

NACA-OOI2 wing at a Maoh number of O.70, angle of

attack of 1.49 degrees, and a Reynolds number of 9

million. The boundary layer is computed with an

increasing part of the invlscld flow velocity in

the first few iterations, while underrelaxation is

applied to the source strength that is used as

input to the outer solver. No boundary layer

curvature effects have yet been accounted for.

Using this procedure _he inner and outer flow are

smoothly adapted to each other.

In figure 4 the initial invlscid velocity

distribution (vlz. without a boundary layer effect)

is shown, together with the final viscous velocity

distribution and the corresponding boundary layer

variables. The difference between the Inviscid and

viscous velocity is small, except at the trailing

edge, where the boundary layer displacement effect

is appreciable. This testcase has been calculated
with thirteen viscous-inviscid iterations in order

to obtain a converged lift value. The convergence

history is shown in figure 5a. Finally, in figure

5b the convergence history of the residuals in the

MATRICS outer flow solver are given as a function

of the number of smoothings. A reduction in both

maximum and mean value residual of 2.5 orders of

magnitude has been obtained, which is promising for

further development of the interaction algorithm.
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" A_stract

To assess the state of the art in ship

viscous flow computation a Workshop was

organized in 1990 by three organizations:

SSPA Maritime Consulting AB, Chalmers Uni-

versity of Technology and Iowa Institute of

Hydraulic Research. Two test cases were

specified by the organizers _d sent out to

all interested research groups, which were

asked to submit results in a prescribed

format. In Septemer 1990 a meeting was held

at Chalmers University of Technology. All

results had then been collected and presen-

ted in a common format, and the theories

behind the methods compiled in a table

based on responses to a questionnaire sent

our earlier. During the meeting, each

research group was first given the oppor-

tunity to briefly introduce their method

and results. Thereafter, a considerable

time was spent on general discussions on

the performance of the different methods

considering the differences in the under-

lying theories. Specific items that were

adressed were grid generation, governing

equations, boundary conditions, turbulence

modelling and numerical method. Practical

aspects on the results, for instance from

the point of view of propeller design, were

also discussed. The Workshop Proceedings

contain a description of the participating

methods and the results of both test cases.

In the present paper a summary of the Work-

shop and its results is presented.

_ntroduG_i_n

Although viscosity is present in the

entire flow around a ship it has a signi-

ficant effect only in the boundary layer

around the ship and the wake behind it. The

present paper deals with the flow in these

two regions, which are limited in size, but

very important from at least two points of

view. Frictional forces within the b0undary

layer give rise to a viscous reSistance_

the ship, in most cases the dominant resis-

tance component, and the velocity distribu-

tion in the near wake determines the design

and performance of the propeller.

Despite its obvious importance the

first serious attempts to compute the

viscous flow were made relatively recently,

about twenty years ago. This is in contrast

to the long term research in the inviscld

flow area, where wave resistance research ==

has been under way during the entire twen-

tieth century. The reason for the diffe-

rence is that the complicated viscous flow

equations, i.e. the Navler-Stokes equations

and approximations thereof, are less ame-

nable to analytical treatment than the in-

viscid equations, normally based on poten-

tial flow theory. Therefore it was not un-

til computers had become powerful enough to

handle three-dlmensional boundary layer

theory numerically that research on viscous

flow computations was started.

During the 1970's a number of methods

for predicting ship boundary layers were

developed, and in 1980 it was considered

appropriate to assess the state of the art

in this area. To accomplish this, an inter-

national Workshop on ship boundary layers

was organized by SSPA, the Swedish State

Shipbuilding Experimental Tank, in coopera-

tion with the International Towing Tank

Conference, ITTC*. The purpose was to bring

together specialists on ship boundary layer

calculations from all over the world, and

to let them apply their techniques and

methods to two test cases, specified in

detail by the organizers. In June of 1980 a

meeting was held in Gothenburg. The results

of 17 methods had then been collected and

presented in a uniform format. During the

meeting the various components of the

methods were discussed in the light of the

results produced. The general finding was

that most methods were able to predict the

thin boundary layer Over the major part of

the hull with an accuracy sufficient for

engineering purposes, while all of the

methods failed completely in predicting the

flow near the stern and in the wake.

In the 1980's development accelerated,

and the focus was changed from the thin

boundary layer to the stern/wake flow. As

evidenced by the 1980 Workshop a new class

of methods with less restrictive approxi,

matlons was required. The interest of

researchers was soon focused on the Rey-

n0idSAveraged Navier-Stokes (RANS) equa-

tions, and a number of such methods was

during 1980's.proposed the Towards the end

of the decade it was considered timely to

organize a second Workshop to investigate

the progress made. This task was undertaken

by three organizations: SSPA Maritime Con-

sulting and Chalmers University of Techno-

logy (CTH) in Sweden and Iowa Institute of

Hydraulic Research (IIHR) in the USA.

As in the first Workshop,

of the new event was twofold:

the purpose



to assess the state of the art in ship

viscous flow calculations

count of the Workshop, reference should be

made to the Proceedings 5.

O to analyze the results of the diffe-

rent methods in light of the under-

lying theories, thereby obtaining

information on the most promising ways

to achieve further improvement

The 1980 WQrkshop had been successful

in achieving these goals, so the new Work-

shop was organized in a similar way. Two

test cases were selected. The so-called

HSVA tanker 2 was again chosen, as being the

best documented test case available, see

for instance Hoffmann 3 and Wieghardt and

Kux 4 . Even though measurement data have

been obtained only at model Reynolds num-

bers, the participants were asked, as an

optional exercise, to carry out calcula-

tions also for a full scale Reynolds num-

very rare, so far. The second test case

was designed to produce a significantly

different stern flow with a minimum change

of geometry , More information about the

design philosophy is given in the next sec-

tion. A very important feature of the se-

cond case (the "Mystery case") was that no
measurement data were available when the

calculations were carried out.

Test case_

HSVA T_nker, Case I

A body plan of the first test case,

the HSVA tanker is shown in Fig. I. The

boundary layer measurements by Hoffmann 3,

and the subsequent stern-flow measurements

by Wieghardt, Kux and Knaack 4, were made on

a double model of this hull in a 1.2 m dia-

meter, slotted-wall wind tunnel, in which

the turbulence level was of the order of 1

percent. Different types of pressure probes

were used. The model was supporte_ in the

tunnel by means of wlres and a stin_at_he

stern. The nominal length of the model was

2.74 m but for reference length we have

bar. This was to shed some light on the used the length between perpendiculars,__L -

difficulties encountered at thls iarger 2.664 m, whlch=_glves_a_R_eynolds number of-

scale, for which calculations have been 5 • 106 . Neither the tunnel nor the support

were modeled by any of the computors.

As in the first Workshop, attention

was confined to double models, in which

wave effects are absent and the free sur-

face may be considered as a plane of sym-

metry. Also, dnly the flow on the bare

hull, without appendages and propulsors,

was considered.

Mvsterv hull. Case II

The second test case, for which no

measured data were available by the time of

the meeting, was designed by Prof G. Dyne

at Chalmers and Mr L.G. Jonsson at SSP_.

The purpose was to create a significantly

different wake pattern with a minimum of

geometry chang_ a_ co_ared %_ :the- flrst

case. Thus, only the stern sections were

modified. By making them more U-shaped

stronge r !ongitudinal _vgrtices_gpuld be

expected behind the hull, creating a more

distorted wake field, see Dyne 6. A body

plan is shown in Fig. 2.

The first announcement of the "1990

SSPA-CTH-IIHR Workshop on Ship Viscous

Flow" was distributed in late 1988, to-

gether with a questionnaire to be returned

by 15 May 1989 by all researchers interes-

ted in taking part in the Workshop calcula-

tions. Efforts were made to invite partl-

cipation by originators of commercial CFD

codes. No less than 21 computors indicated

their interest in participating, and in

August the data and instructions for the

first test case were sent out. Similar in-

formation for the second case was distribu-

ted in December. In the early summer of

1990 results from !9 methods had been re-

ceived, and the difficult task of conden-

sing all the information into a uniform

format was started at CTH. By the time of

the Workshop meeting, which was held at CTH

12-14 September 1990, all results had been

plotted in a way such that comparison bet-

ween the different methods could be easily

made. Further, the replies to the question-

naire had been compiled at IIHR and conden-

sed into a table, useful for quick referen-

ce to the theory behind each method.

In the present paper a brief summary

of the Workshop i8 given. The two test ca-

ses are described next, followed by an

overview of the methods. Thereafter, some

important results are discussed and finally

some conclusions are drawn. For a full ac-

Velocity measurements using Laser-Dop-

pler Velocimetry were carried out at the

University of Hamburg after the Workshop _,

but the results are analyzed and included

in the Proceedings s.

Overview of methods

Some 19 organizations from 12 count-

ries participated in the Workshop. A sum-

mary of the important characteristics of

the methods is presented in Table 1 (at

the end of the paper). This table was

prepared on the basis of information sup-

plied by the partlcipants in a question-

naire that was distributed at thebeginning

and again at the end of the Workshop. Ef-

fort was made to obtain as much and as

accurate information as possible on each

method. The following is a review of some

of the similarities and differences among

the methods.

The overall strategy summarized in

item A indicates that 12 participants re-

stricted their calculations to the stern

and wake flow (S) while 7 treated the com-

plete hull (H), including the bow. Both

global (G) and zonal (Z) methods are repre-

sented but the most common combination Is a

global method applied to the stern flow

(S,G). The 5 zonal approaches employ an

inviscid-flow method. In three of these,

t
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2. Body plan, Mystery Hull (Forebody as
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the viscous and inviscid solutions are

matched at a specified boundary outside the

viscous layer. One participant group (CT)

made both global and zonal calculations.
However, only the results from their global
calculations are presented here. It is sig-
nificant to note that none of the zonal

approaches performed iterations between the
viscous and invlscid flows to allow for

interaction although in some cases the

match boundary between the two zones was
placed rather close to the hull.

Section B of Table 1 summarizes the

equations and variables. One method employs
integral equations and therefore provides a
link to the earlier ship boundary layer

Workshop i. It is clear that much of the
information sought through the question-
naire is not relevant to the integral app-
roach and therefore there are very few en-

tries for that method. Among the differen-

tial methods, a vast majority solves the

Reynolds-Averaged Navier-Stokes equations,
while four adopt reduced forms (P, Ra) of
these equations. One method uses large-eddy

simulation along with a subgrid turbulence
model. In all cases, the equations are sol-

ved in the so-called primitive variables,

i.e., velocity and pressure. Thus, for

example, methods that use vorticlty or
stream functions are not represented. There

is a great deal of variability in the
choice of the velocity components, ranging
from simple, orthogonal ones to ccvariant

components and grid-orlented nonorthogonal

components. This choice impacts on the com-
plexity of the codes and storage require-

ments for the geometrical quantities asso-
ciated with the grid. Most methods employ

nonorthogcnal coordinates in all planes,
but a few retain orthogonality in one
(usually transverse) plane. This particular
feature is related to the manner in which

the grid is generated.

With the exception of the integral

approach, all methods require a model for
turbulence. These are summarized in section

C. It is seen that 4 methods use algebraic

models of eddy viscosity or mixing length
(AL) and 13 employ the k-E model. The lar-

ge-eddy slmulation method uses the Smago-
rinsky eddy-vlscosity model along with the
van Driest damping function for the subgrid
scales. Of the 4 methods that employ alge-

bralo, zero-equation models, three use the
Baldwln-Lomax model and one (H) uses the

mixing-length model. As far as can be as-
certained, all users of the two-equatlon

k-E model retain the same constants, (Cu,

C_1, Cu2, Gk, G_) - (0.09, 1.44, 1.92, 1.0,
1.3). In two cases (HC, PV), however, the
basic k-_ model is combined with a one-

equation model for the near-wall region,

while others employ the wall function app-
roach. These two, and the methods employing

algebraic models, integrate the flow equa-
tions up to the wall, where the no-slip

condition Is applied. This approach
requires many more grid _olnts in the
near-wall region to resolve the large gra-

dients of velocity and eddy viscosity.
Methods using the wall-functlon approach,

q_



_n the other hand, satisfy the law of the

wall and related conditions at one or more

grid points away from the wall, and do not

explicitly solve the flow equations in the

near-wall layer.

Section D of Table 1 provides an over-

view of the boundary and initial conditions

employed in the various calculations. AS

all methods approach the solution either by

a time marching or an iteratlve process,

all require initial conditions (time - 0).

In this respect, three methods start the

solution from rest, 7 use uniform flow, one

uses boundary layer solutions, another uses

a potential flow solution, while 5 indicate

some other procedure. Among the last cate-

gory are methods in which a parabolic march

is made through the solution domain with an

assumed initial pressure field. There is

also considerable variation among methods

in the quantities that are determined or

prescribed at the start of the calcula-

tions. The initial conditions presumably

influence the number of iterations or time

steps required to obtain the steady state

solution_ that are sought.

The upstream boundary conditions de-

pend upon whether the solution is obtained

for the entire hull or only the stern and

wake flow. In the case of the calculations

for the entire hull, two types of treatment

have been made. In five of the seven such

calculations, the upstream boundary is pla-

ced about one-half ship length ahead of the

bow, and quite simple boundary conditions

are prescribed in the uniform flow there.

In the remaining two (IL and KaO), the

boundary layer over the bow is calculated.

Itappears that none of these calculations

takes any account of the initial region of

laminar flow or of the transition that was

provoked artificially in the experiments.

In the 12 calculations that were restricted

to the stern and wake flow, there are dif-

ferences in the location where the calcula-

tions were started as well as in the para-

meters that are prescribed. Three partici-

pants started the calculations at a check

station, X/L - 0.646, where the integral

parameters of the boundary layer were

supplied from experiment. (The X-axis is

along the hull, with the origin at the

bow.) Others started the calculations some-

what ahead of this section, using, in some

cases, the data at the check station as a

guide. In all such calculations, however,

the detailed velocity and turbulence para-

meter distributions required by the methods

had to be generated by the participants. In

this regard, most appear to have used two-

dimensional boundary layer correlations,

with the three dimenslonality neglected.

In one case (PJL), however, a special up-

dating scheme was devised to obtain a set

of initial conditions that is consistent

with the equations being solved. The diffe-

rences in the initial conditions are likely

to be observed most clearly in the results

at the check station.

There is also considerable variation

in the location of the downstream boundary

Where the solutions terminate, and the con-

ditions applied at that boundary. In most

cases the solutions are taken far enough

from the stern to assume a negligible up-

stream influence and for the parabolic or

extrapolated conditions to be valid.

The boundary conditions at the hull

surface were discussed above in connection

with the turbulence model. For complete-

ness, however, we note that the no-sllp

conditions are applied explicitly in some

methods whereas they are satisfied indi-

rectly in methods that rely on the wall-

£unctlons approach.

All of the calculations presented at

the Workshop have exploited the geometric

symmetry about the ship centerplane and

calculated only one half of the hull. Also,

all participants assumed a double body and

applied symmetry conditions along the water

plane.

The location of the solution boundary

in the "farfield" some distance from the

ship axis, and the conditions specified

along that boundary, also show considerable

differences. With respect to the location_ _

the five zonal calculations performed With

viscous and Inviscid methods use a boundary

that varies from 0.08 of a ship length in

one case (H) to 0.7 in another (KaO). Re-

call that this is the boundary at which the

two solutions are matched and, as noted

earlier, none of the calculations accounted

for the interactions between the two ½_

regions. In these zonal calculations, the

inviscid solutions provided the boundary

conditions for the viscous solutions. In

the remaining, global approaches, the l_a-

tion of the farfield boundary ranged from

0.i of a ship length (T) to 1.5 (HC) with

many using a value of one ship length.

However, those who have used boundaries

rather close to the hull (SZC and T) have

provided boundary conditions from inviscld

flow. In this respect, these methods, cha-

racterised as global by their originators,

could also be regarded as zonal. Methods

that have placed the boundary at larger

distances from the hull have tended to pre-

scribe uniform-flow conditions in the far

field. Some differences are observed, how-

ever, in these cases in the particular

variables or conditions that are specified

or satisfied; see, for example, codes C and

A in the table.

Section E of Table 1 pertains to the

generation and control of the numerical

grid. For the Workshop calculations, all

participants employed a single block grid

although one (GCHM) indicated that their

method can accommodate a multi-block grid.

Fully nonorthogonal grids as well as grids

that are orthogonal in some planes (typi-

cally in the transverse sections) or at

boundaries (usually at the hull ) are rep-

resented in the calculations. The most po-

pular method for generating the grid appe-

ars to be numerical, although some partici-

pants have employed analytic and algebralc

methods, and even combinations of methods.

m
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Among the numerical approaches, elliptic

methods for the entire three-dimensional

solution domain are the most common. Seve-

ral methods use post-generatlon smoothing

of the grid. Control of the grid is exer-

cised most commonly from the boundaries

although some indicate that it is done from

inside the solution domain.

The numerical features of the various

methods are sum_marlzed in section F. First

of all, we note that there is no participa-

tion from the flnlte-element community and

therefore items in the questionnaire that

were designed specifically to obtain infor-
mation on such methcx_s are deleted in the

table. Of the methods represented at the

Workshop, there are four finite-difference

methods, 10 finlte-volume methods, and, for

lack of a better term, four are classified

as mixed methods. To these must be added

the one based on integral equations which

are also solved by finite-difference

methods. It should be pointed out that not

all of the methods in each of these catego-

ries are generlcally different. In other

words, there are groups of methods in each

class which share a great deal in common

and, from a numerical perspective, may be

classified as a single method. Be that as

it may, we shall note the most significant

features of the methods represented here.

First, discretizatlon in both stag-

gered and regular (colocated) grids is used

in finite-difference as well as finite-

volume methods. There is some correlation

between the type of grid used and the met-

hod employed to solve for the pressure (or

establish the pressure-velocity coupling)

for this incompressible flow. Differencing

of the convective terms is made by a vari-

ety of means, including upwlnding, central

differences, hybrid combinations and use of

analytic solutlons (FA). The responses to

the questions on formal order of accuracy

and formally conserved quantities are

rather surprising. MOSt methods claim first

or second-order accuracy but two consider

their methods to be accurate upto the third

order. The response to the second question

seems to be correlated with the equations

that are solved rather than any formal

attempt in the methods to conserve mass,

momentum, and total energy.

For the pressure, four methods use

fully-coupled solutions. Two of these (GCHM

and K) employ artiflcial compresslbillty,

one (AS) uses a dlscretlzed continuity

equation, another (H) uses the normal mo-

mentum equation. Most of the remaining

methods employ segregated pressure-velocity

coupling algorit_s, SIMPLE being the most

cc_w_on.

In the execution of the solutions,

most methods employ iteretive techniques

with under-relaxation or variable time

steps. Explicit as well as implicit methods

are represented. The solutions of the dis-

cretlzed algebraic equations are obtained

using different tactics, including point

substitution, line substitution, LU deC_m-

position of matrices, and ADI methods.

Section G of Table 1 concerns the com-

putations performed by the participants. As

the two test cases are not substantially

different with respect to the computational

effort involved, the numbers in this sec-

tion are typical of both cases. First of

all, it is quite significant that calcula-

tions have been performed not only on

state-of-the-art supercomputers (designated

by S) but also on smaller machines (desig-

nated by M), such as workstations. The to-

tal number of grid points employed shows s

great deal of variation, ranging from a low

of 8,000 to a high of 253,000. It is inte-

resting to note that the higher numbers are

not necessariliy correlated with the use of

supercomputers, nor are they correlated

with the use of near-wall turbulence models

or calculations made for the entire hull

including the bow.

The number of time steps or iterations

performed to obtain the solutions presented

here varied widely, ranging from only 40

(BZLS and SZC) to 20,000 (ZM), although, in

the latter case, the large-eddy simulation

should never realize a steady state as de-

fined for the other methods. It should be

noted that a variety of convergence cri-

teria were adopted to declare that a steady

state had been obtained. The storage requi-

rements and computer run times also varied

over very wide limits. This is not surpri-

sing in view of the differences in the num-

ber of grid points and machines employed,

but it is interesting to note that run

times ranging from several hours to 5 days

were reported by users of the smaller ma-

chines. The differences in the machines are

also reflected in the cpu time per itera-

tion per grid point. The fastest times were

of course reported by users of supercompu-

ters.

ResuA_s _n¢ Discussion

Results were requested from the parti-

clpents at a Reynolds number of 5 • 106 for

both hulls. As an optional exercise the

computors were also asked to submit full

scale results corresponding %o a Reynolds
number of 2 • 109 for case I. All but one

delivered the model scale predictions but

only three had computed the high Reynolds

number case.

Pressure and friction distributions

were reported at the waterline and keel and

along three section girths on the hull,

while velocity distributions in the form of

leo-velocity contours and, in some cases,

cross-flow vectors were given at four sec-

tions. For the most interesting section,

the propeller plane, the pressure end (if

computed) the turbulent kinetic energy were

also reported.

The complete results may be found in

the Proceedings 5, but in the present paper

only a few representative examples will be

given. These include the pressure distri-

bution along three section girths and the

velocity distribution (iso-velocities and
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cross-flow vectors) at the propeller plane

of Case I, see Figs. 3, 4 and 5. In these

Figures the results of all 19 methods are

included. Measured data are represented by

symbols in Fig. 3, while the computed re-

sults are given as lines. In Fig. 4 iso-ve-

locity contours corresponding to 0.3, 0.4,

0.5, 0.6, 0.7, 0.8 and 0.9 times the undis-

turbed velocity are given. For comparison

the experimental data are shown in the lo-

wer right corner. Note the different scales

for the computed and experimental cross-

flow vectors in Fig. 5.

Before embarking on a more detailed

analysis a comparison of the results pre-

sented at this Workshop with those obtained

a decade ago for the SSPA-ITTC Workshop on

Ship Boundary Layers _ is quite revealing.

Fig. 6 shows the axial velocity contours

for the HSVA Tanker at X/L-0.942 presented

at the previous Workshop. A comparison of

these with the results shown in Fig. 4 pro-

vides an overview of the achievements of

the past decade. It is clear that the ear-

1let boundary layer methods have given way

to those based on the Navier-Stokes equa-

tions. Only one such method was represented

in 1980. At the present Workshop, only one

boundary layer method was represented. The

question is whether or not real progress

has been achieved in the prediction of the

flow. If the contours of axial velocity at

the stern are used as the only measure of

success, then we may conclude that progress

has indeed been made. But, consider the

following observation. Most calculations

methods of the past did rather well at pre-

diction of the boundary layer over the hull

and failed only at the stern. Among the

present methods, few, if any, predict the

boundary layers with the same level of ac-

curacy but continue to provide results for

the flow over the stern and into the wake.

The girthwlse pressure distributions

of Fig. 3, will be considered section by

section. First of all, we note that there •

are significant differences in the way dif-

ferent methods obtained the results at the

check station, X/L - 0.646. AS indicated in

item A of Table 1 (Code H), seven methods

performed calculations for the entire hull,

starting upstream of it. Although the man-

ner in which this was accomplished dif-

fered, their results at the check station

reflect, to some extent, their resolution

of the flow over the bow. Of the remaining

methods, three started the calculations at

the check station itself (see item D, Table

1) using the integral parameter information

provided there. Note that no information on

the crossflow at the check station was pro-

vided. The remaining methods started the

solutions on the hull somewhere upstream of

the check station and may have used the

information provided to guide the selection

of the upstream conditiong. These differen-

ces among the methods must be taken into

consideration when examining the results at

the check station as well as further down-

stream.

In view of the foregoing, the results

of four of the seven methods that calcula-

\

<

_°- _,_

Measured _--

6. Axial velocity contours at X/L - 0.942,

predicted in the 1980 Workshop _.

ted the flow over the entire hull are in

remarkably good agreement with the data

with respect to the glrthwlse pressure dis-

tribution at the first station. In fact,

their predictions are as good as those of

some of the methods that started the solu-

tions on the hull. Methods that started the

calculations on the hull show varying le-

vels of agreement in the pressure distribu-

tion at the check station. The disagreement

at the check station of methods that star-

ted at that station, or Just upstream, are

rather surprising. The reasons for this are

not clear. Be that as it may, these diffe-

rences should be borne in mind as compari-

sons are made further downstream.

At the next downstream section, X/L

- 0.875, we see that the measured pressure

distribution shows a decrease from the



keel, with a minimumc D of about -0.24

around 30 percent of the girth, an increase

up to about 70 percent of girth, followed

by a near constant value of -0.ii around

the waterline. It is clear from Fig. 3 that

many methods reproduce this trend but, with

one possible exception, fail to predict

either the magnitude or the location of the

pressure minimum.

At the last section, X/L - 0.942, the

measurements indicate minimum cp at around

8 percent girth, much closer to the keel

than at the previous station, and an in-

alistic. Four or five methods predicted a

wake of type B, while the remaining ones

produced A type wakes.

For a propeller designer this situa-

tion is unsatisfactory, since the wake dis-

tribution determines the variation in loa-

ding during one turn of the DroDeller, i.e.

the vibratory forces. On the other hand, as

was shown by one of the authors (Larsson)

at a continued Workshop in Osaka in the

fall of 1991, the mean value around the

circle at all radii may still be well pre-

dicted, as may the mean value of the velo-

crease followed by a constant pressure city in the entire propeller disk.

around the waterline. The calculations ge-

nerally predict higher pressures throughout

and all fail to capture the dip in pressure

around 45 percent girth. The methods that

did poorly at the previous station continue

to yield poor results at this station also.

From the point of view of propeller

design the most interesting results are

those at the propeller plane, reported in

Figs. 4 and 5. The propeller disk is indi-

cated in these Figures, and it is seen that

particularly in this area the results vary

considerably between the different methods.

For classification purposes it is possible

to distinguish between three types of re-

sults, see Fig. 7.

A 8 C

This

means that the pitch and its distribution

on the blades might be reasonably well pre-

dicted using the calculated wakes of the 4-

5 best methods.

The reason for the failure to predict

hook-like velocity contours was discussed

extensively during the Workshop. To struc-

ture the discussion it was divided into

four main themes: grid generation, equa-

tions and boundary conditions, turbulence

models and numerical method.

There appeared to be a general con-

sensus that grid resolution was not a ma-

Jor cause of the differences between, on

the one hand the methods themselves, and on

the other hand the measurements. This opi-

nion was substantiated by the fact that

several computors had carried out grid in-

dependence studies with very small changes

in the results. There was however a general

feeling that the resolution of the trans-

verse pressure gradient was too low near

the bilge (region of high transverse curva-

ture) on the afterbody. Since this is _here

the longitudinal vortex is generated, the

lack of resolution could explain the too-

weak vorticity in the wake predicted by

most methods. An impression of the grids

used can be obtained from Fig 5, although,

for clarity, not all the grid points are

shown for some methods.

7. Different types of axial velocity con-

tours at the propeller plane.

A. V-shaped contours

B. Contours with a bulge at or below the

propeller center, indicating that part

of the ship boundary layer has been

displaced downwards by the longitudi-

nal vortex hitting the propeller plane

slightly above the propeller center

(see Fig. 5).

C. Contours with a pronounced "hook" due

to the action of a stronger vortex.

Obviously the measured wake is of type

C with quite distinct hooks in the 0.3 and

0.4 contour curves.

Investigating the contours of Fig. 5

it is seen that only one method produced a

wake of type C, but the results of this

method outside the propeller disk, particu-

larly near the waterline, look quite unre-

As for the governing equations, a dif-

ference not reported in the questionnaire

turned out to be the way in which the tur-

bulence terms are considered. It became

clear that only a few methods include all

of the terms. Another difference in the

governing equations (appearing from Table

I) is that some methods use the partially-

parabolic approximation, while others are

fully elliptic. This difference was discus-

sed, and it was concluded that no correla-

tion could be found between the approxi-

mation level in this respect end the per-

formance of the method, as Judged by the

results reported. Some participants had in

fact computed Case I using both types of

equations end found very small differences.

Different inlet boundary conditions

are required depending on whether the com-

putational domain starts on the hull or

upstream of it, but in all cases the parti-

cipants were free to match their solution

to the measured data at X/L - 0.646. Large

differences are, however, seen at this sta-



tion, indicating that this possibility was

not exploited by most of the computors.

Instead, the boundary layer at the inlet

station, if on the hull, seems to have been

estimated from flat-plate correlations. The

methods starting upstream use uniform inlet

flow. To avoid numerical problems a nonzero

value of the eddy viscosity had to be app-

lied right from the start. Values of 50 to

I00 times the laminar viscosity were men-

tioned. No attempt was made to consider

transition. The general feeling was that

the inlet conditions did not significantly

influence the results at the stations on

the afterbody and in.the wake. This conclu-

sion had in fact been verified by some par-

ticipants.

Some discussers expressed the opinion

that the only way to resolve details of the

flow close to the wall (such as limiting

streamlines) is to abandon the wall law.

The general opinion was, however, that it

is difficult to see a large difference in

performance between the methods using the

wall law and the others. A better predic-

tion of the wake contours would have been

expected, and this was achieved by some of

the non-wall law methods but not all. It

was pointed out also that virtually the

only way to compute the full scale case is

to employ the wall law, since otherwise the

innermost grid points have to be positioned

extremely close to the surface, giving rise

to problems with the cell aspect ratios

(the non-dlmenslonal distance from the sur-

face, y/L, is about 250 times smaller for

the full scale case for a given value of

y+). The other boundary conditions were

considered relatively unimportant for the

problems at hand.

Different opinions on the general im-

portance of turbulence modeling were ex-

pressed. It was argued that as experiments

have indicated that the Reynolds stresses

are very small in the major part of the

viscous region near the stern, even an in-

viscid calculation might produce a reaso-

nable result. Some participants reported on

earlier computations for axisymmetric and

three-dimensional bodies, where this app-

roach had been tested with relatively good

results. Obviously the inviscid region had

to be restricted to the neighborhood of the

stern.

A possible explanation for the failure

to predict the correct wake contours might

be the inability of the methods to resolve

the pressure field accurately, i.e. to pre-

dict the transverse pressure gradients that

are believed to produce the vortical flow

s_ucture. In this case. e number of nume-

rical issues are involved, including the

grid arrangement used (staggered versus

regular) and the manner in which the pres-

sure is calculated.

_Qnclusions

The Workshop clearly showed that great

progress has been made during the 1980's in

the development of methods for Dredicting

the flow around the stern and in the near

wake of ships. The boundary layer based

approaches of the 1980 Workshop have given

way to methods based on the Reynolds-Ave-

raged Navier-Stokes equations, albeit using

relatively simple turbulence models. While

the former methods either broke down be-

fore, or predicted completely unrealistic

results in the propeller plane, the new

methods in general capture the gross featu-

res of the wake, such as the thin shear

layer in the lower part and the piling-up

of boundary layer low speed flow around

half draught. In fact, the best methods of

the Workshop predict the shape and location

of the velocity contours in most of the

propeller plane with reasonable accuracy.

The results are however less satisfactory

in the central part of the wake, i.e. in-

side the propeller disk. The bilge vortex,

although weak, redistributes the low speed

flow from the boundary layer in such a way

that very uneven hook shaped velocity con-

tours are created. This feature is missed

to varying degrees by the different

methods. Various reasons for this were dis-

cussed during the Workshop, but no definite

answer could be given. One possible expla-

nation is that the large velocity and pres-

sure gradients in the bilge region are too

inaccurately resolved in the grids employ-

ed.

There are no general differences in

performance between methods based on zero

equation turbulence models as compared to

the two equation models. The disadvantages

of the simpler models may be outweighed by

the advantages of computing the flow all

the way down to the surface. Two equation

models are usually employed in comb_natlon

with the wall law.

Although the new methods are superior

to the old ones in predicting the wake,

results from calculations starting upstream

of the hull, or in front of the check

station, indicate that the ability to pre-

dict the thin boundary layer has not been

improved, rather the contrary. The likely

reason for this is grid resolution. To save

computer time very few grid points are lo-

cated in the thin boundary layer on the

forebody, where the much faster boundary

layer methods may use grids with a very

high resolutlon. This Suggests a zonal app-

roach where the expensive Navler-Stokes

method is used in the stern and wake region

while an efficient boundary layer method is

used for the rest of the hull.

A final point to note is that most

methods predicted, at least qualitatively,

the differences between the two test ca-

ses.The computed cross flow for the second

case is considerably larger in the propel-

ler disk than for the first case, as the

measurements have indicated, and the change

in the contours of axial velocity also

shows the right trend.
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Summary

A numerical method for solving the three-dimensional bound-

ary layer equations for bodies of arbitrary shape is presented.

In laminar flows, the application domain extends from incom-

pressible to hypersonic flows with the assumption of chemical

equilibrium. For turbulent boundary layers, the application

domain is limited by the validity of the mixing length model

used. In order to respect the hyperbolic nature of the equa-

tions reduced to first order partial derivative terms, the mo-

mentum equations are discretized along the local streamlines

using of the osculator tangent plane at each node of the body

fitted coordinate system. With this original approach, it is

possible to overcome the use of the generalized coordinates

and therefore it is not necessary to impose an extra hypoth-

esis about the regularity of the mesh in which the boundary

conditions are given. By doing so, it is possible to limit, and

sometimes to suppress, the pre-treatment of the data coming

from an inviscid calculation. Although the proposed scheme

is only semi-implicit, the method remains numerically very

efficient.

1 INTRODUCTION

A great number of three-dimensional boundary layer calcu-

lation methods have been developed in the last two decades.

Some of them are presented in the synthetic papers of Smith 33,

Cousteix 14 and, more recently, Humphreys and Lindhout 17.

Although the amount of work done to solve the Prandtl equa-

tions is substantial, some difficulties remain when the cross-

flow direction changes in the calculation domain. As it has

been shown by Wang 35 and Krause 21 this problem comes

from the nature of the set of the boundary layer equations

which imposes a CFL type condition to the discretization

scheme (Cebeci et al9). To fulfil this condition, at least two

solutions may be proposed: i) to choose a simple numerical

scheme as, for example, an explicit upwind discretization of

the crosswise derivatives ; iS) to use an implicit discretization

(Lindhout:Moek25). In the second case, the calculation effort

is much more important, and therefore reduces the interest in

using the Prandtl equations (Patel-Baek 31, Johnston20). In

practice, a third strategy exists to conciliate the respect of the

CFL condition with the efficiency of the numerical scheme.

Considering only the finite difference methods, Cebeci 9 uses

the standard "Keller Box" method everywhere it is possi-

ble and the "zig-zag" scheme where the crossflow direction

changes. In this latest scheme, the crosswise advection terms

are partly written at the calculation station, and partly at

the upstream station. To overcome some limitations of

this method, Cebeci 9 10 11 proposes the "Characteristic Box

Scheme" which takes into account the existence of character-

istic directions in the boundary layer equations to limit the

streamwise integration step in the region where the crossflow

changes sign in the boundary layer thickness. This leads to

an extra iteration step at each calculation station.

The numerical scheme which is presented in this pa-

per integrates the Prandtl equations along the local stream-

lines, which are sub-characteristic lines. By doing so, the in-

tegration proceeds always in the same direction whatever the

crossflow direction, and the CFL condition is fulfilled, provid-

ing that the marching step is small enough. As the diffusion

ten'ns are expressed at the unknown station, the proposed

method belongs to the semi-explicit type.

The main Originality of the proposed method comes

from the choice of the space in which the equations are inte-

grated. Most methods use generalized coordinates in a body

fitted coordinate system. This needs the calculation of the

Christoffel coefficients which introduces an extra hypothesis

dealing with the regularity of the mesh, while the boundary

layer assumptions impose only the regularity of the body sur-

face. To avoid this extra limitation, the discretization of the

equations at a given station can be done in the tangent plane

to the surface at this point instead of the actual surface. To

respect the metric properties of the surface and express the

covariant derivatives of the velocity, the tangent plane must

be provided with a particular metric. This is simply done

by orthogonally projecting the body fitted coordinate system
of the crosswise derivatives at the unknown station.

_d the velocity field on the tangent plane at the considered

With the first solution, the advancement of the in- points.
tegration at a given station always goes in the same cross-

wise direction and the changes of the crossflow, which appear

on bodies at incidence, cannot be completely calculated, as

shown by Cebeci 9 19 _5, unless a change of the discretiza-

tion scheme across the boundary layer thickness is allowed



2 Boundary layer equations

Body fitted coordinate system

To set up the boundary layer equations, it is convenient to use

a body fitted coordinate system (see, for example, Hirschel-

Kordullal6). Let z i be the cartesian coordinates of a surface

point. This point is known by the two parameters X 1 and X 2.
-7

With e_ the cartesian base vector, the vectors defined by

Oz _ -7,

a-: = Fk--_e, _ = 1,2 _ = 1,2,3 (i)

are tangent to the body fitted coordinate system.

The surface base reference frame is obtained by

adding the unity vector a"_ perpendicular to _ and _. The

reference frame (_'_1, e-_, ?'_s) in the vicinity of the surface is

built as shown in figure 1. Introducing the thin layer assump-
--=4

tion, the metric elements gi# = e,. e_ become independent of

the X s coordinate.

The boundary layer equations are obtained by ap-

plying the Prandtl hypothesis to the Navier-Stokes equations

written in the curvillnear coordinates (X', i = 1,2, 3).

For an incompressible laminar flow, the boundary

layer equations read :

V,U _ =

pU'_7,U ° =

0 i = 1,2,3

-V=P

o /ou_

(2a)

= 1,2 (2b)

The covariant derivatives of the velocity are expressed using

the Christoffel coefficients:

OU ,_

V'Y°= Ox--':+ r_u' (3)

In the equations 2a and 2b, the pressure field is known. It is,

for example, the wall pressure given by an inviscid Calculation:

The boundary conditions are the no-slip condition at the wall

and the velocity components U_', (with a = 1,2) at the outer

edge of the boundary layer. The latter can be obtained from

the pressure field by integrating the Euler equations at the

wall.

Nature of the set of equations

From the theory of quasi linear differential equations, the

boundary layer equations 2a and 2b are parabolic because

of the diffusion terms. It has been shown by Wang 35 and

Krause 21 that the particuIar influence of the advection terms

could be studied from the characteristic surfaces of the sub-

set of equations made of the first order derivatives. They have

shown that the surfaces made of the straight lines perpendic-

ular to the wall and the stream surfaces are sub-characteristic

surfaces. This means that the influence domain of a particular

station is limited by the two surfaces, formed of perpendicular

lines to the wall, which are tangent to the two most deviated

streamlines.

3 Numerical method

A great number of calculation methods have been developed

to integrate the boundary layer equations in direct mode,

i.e. with a prescribed external velocity field. Some reviews

of these methods can be found in Smith 33, Cousteix 14 and

Humphreys'Lindhout 17. Most of these methods are space-

marching, with an upstream discretization of the advection

terms.

Lindhout-Boer 24 made a semi-implicit method in

which the crosswise derivatives along X 2 are explicitly dis-

cretized in the upstream direction, the other derivatives be-

ing written implicitly. This allows a change of the crossflow

direction to be taken into account very simply. The calcu-

lation step in the streamwise direction is limited by a CFL

condition. To avoid this constraint, it is necessary to express

implicitly the X2-derivatives. This can be done simply if the

dependence domains remain in a given side of the mesh lines

X 1 in the whole calculation domain (fig. 2a). For such flows,

for example flows over infinite swept wings, the calculation ad-

vances everywhere in the same direction along the X 1 lines.

Jelliti 19 and Barberis 6 used this technique. For more complex

boundary layer flows, such methods do not allow accessibility

to the domains for which the crossflow does not remain in the

marching direction along the X 1 lines.

Lindhout et al. 25 have developed a technique in --

which the choice of the numerical scheme for the crosswise

derivatives in the X 2 direction and the marching sense along _-

these lines depend on the most deviated streamlines through-

out the boundary layer at the calculation station. This allows z

a certain optimization o_"the calculation effort by choosing in

each region the most suitable discretization.

Other methods have been considered. An effi-

cient scheme of the '_predictor-corrector" type is used by

Matsuno 27. Wang 36 has proposed a"zig-zag" scheme in or- --

der to take into account the dependence domains for the dis-

cretization of the velocity along the X _ direct_onl These terms

are written partly at the known upstream station and partly

at the unknown calculation station, on both sides of the corre-

spondin_ X I line. The stability of this scheme is discussed b_
Krause 21 . A similar scheme has been used also by Iyer et al. 1°

and Cebeci 9. This author prefers a modified version of the

"Keller box scheme", called the "characteristic box scheme"

which takes into account the dependence domains by using

the direction of the local streamline in the discretization for-

mulation. This leads to an extra iteration step at each station

and a limitation of the marching step in the X _ direction 11.

Fully implicit techniques in which the X2-derivatives

are written in the unknown plane X 1 = Cste (fig. 2a) can

be considered. Patel-Baek 31 and Tassa et al. 34 use the alter-

nated direction procedure to solve the equations in a whole

plane X 1 = (Tare. Johnston 20 prefers to sweep only in the

X 2 direction, which leads to iterative inversion of tridiagonal

matrices; the unknown quantities being taken at the previous

iteration.
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cartesian reference local reference frame
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Figure i : Body fittedcoordinate system and wall reference
frame.

Equations along the local streamlines

In order to respect the physical dependence domains at each

point of the boundary layer while keeping a singlemarching

directionalong the Xi-[ines,the momentum and energy equa-

tionswillbe discretizedalong the localstreamlines. This also

allows the use of a unique scheme in the whole calculation

domain.

As is usually done in boundary layer calculations,a

reference length L(X I,X i) is introduced to adapt the grid

perpendicular to the wall to the boundary layer thickness.

With the normal coordinate T]= XS/L(X l,X2), the bound-

axy layer equations along the localstreamlines read

aP__ P U" OL
v,pu'+T_- = -7 _ _--1,_(4a)

]_ vu = --auo vu: o

au=l
o= 1,2

with

US • i Or,
= -wT_ i=1,2 (5)

dX l being the step size in the main marching direction, d_(rl)

iscalculated using the metric coefficients

de(w) = (g,, dX_dX_) '/2 i,j = 1,2 (fi)

where dX,_ is a function of _ obtained from the definition of

the local streamline parallel to the wall

dX_ dX._,
U---v-= U---z- (Z)

VU _isthe totalvariationof the velocitycomponent/.P along

the streamline

a) body fitted coordinate system

X 1 X= ...'-_

•;

i/-/

b)._cfcrcnce fra/ne in
me tangent plane

C_hVelocity field in
e tangent plane

Figure 2 : Building of the calculation mesh and velocity field

in the tangent osculator plane.

) i,o = 1,2 (s)

Osculator tangent plane

The use of generalized coordinates introduces an extra hy-

pothesis concerning the regularity of the body fitted coor-

dinate system which must be regular enough to allow the

calculationof the Christoffelcoefficients.Moreover, as the

calculationmethod isof semi-impllcittype, the respect of the

CFL condition leads to the use of a subgrid for the integra-

tion in the X1-direction. The calculationscan bc done more

rapidly ifthe equations are written in a cartesian coordinate

system. Due to the localcharacterof the boundary layerprob-

lena,confined to the vicinityof the body surface,itisnot the

global cartesianframe used to define the surface which will

be considered, but a local cartesian frame linked to a mesh

of the body fitted coordinate system in which the boundary

conditions are given.

To build the osculator tangent plane, it will be as-

sumed that the Christoffel symbols are defined, in order to

show that the new approach is identical to the classic one,

but this assumption is not necessary.

Let 0 be the node 1 2(X_, Xj ) of the mesh in which the

boundary conditions are given. The local reference frame at

this point is _', i -- 1,2,3. To integrate the boundary layer

equations to the next station (X_+I,X]) , it is necessary to

represent in a cartesian space the neighbouring nodes with

respect to point O as well as the velocity vectors (fig3). To

this end, at the point 0 of the surface (S) is associated a



X 2

\

ddpendence 0
domain of the

calculation

calculation mesh
body fitted coordinate
system for boundary

conditions

Figure3 : Sub-calculationmesh with respectto the repre-

sentationofthe body fittedcoordinatesystem inthetangent
plane.

point O' of an euclidian space (E). The reference frame (e_,

i = 1,2) at this point is such that

This leads to the equality for the metric elements

g,)o,= g,)o (10)

It can be noted that if the points 0 and O' are identical, the

euclidian space (E) which has been built is simply the tangent
plane to the surface at O. In order to give to (E) the metric

properties that represent the vicinity of point O of (S), we
impose

r:,)o,=r',)o (11)
This allowsto representthe body fittedcoordinatesystemin

the vicinityofpointO by a curvilinearcoordinatesystem in

thetangentplanewhilerespectingthe distancestothesecond

order(fig.2-b).For thisreason,the tangentplaneiscalled

osculatorplane.With thecondition(11),the image P' in(E)

ofa pointP in(S) nearthe pointO isgivenby

-_[ i ]O'P'=(e_)o dzi+ _ (F;k)Od_Jdz' (12)

After the construction of the mesh in the neighbour-
hood of O in the tangent plane, the representation of the

velocity field is simply done: the velocity vectors are known,

for example, by their modulus and directions with respect

to the Lines X 1 on the surface. The directions with respect

to the curvilinear mesh in the tangent plane are assumed to

be the same (fig. 2-c). Knowing the geometry of the mesh

and the velocity at the nodes, the calculation of the covari-

ant derivatives of the velocity is straightforward. With the

11 k+l X 2

S ......

Figure 4 : Discretization of the momentum and energy equa-
tions.

representation which has been adopted, the precision of this
calculation is of first order.

The covariant derivative of a vector is an intrinsic

quantity which does not depend on the reference mesh. This
quantity exists even if discontinuities of the slope of the co-

ordinate lines are present. In this case, the Christoffel coef-

ficients are not defined and the velocity components are dis-

continuous. Such a configuration can be dealt with if the

osculator tangent plane is built without using the Christoffel
coefficients. It can be shown that the construction which has

been described is equivalent to the orthogonal projection of

the body fitted coordinate system, and the velocity field, in

the tangent plane at a given point. This transformation re-
spects the lengths and the angles to the second order, which

allows to express the covariant derivatives to the first order.

Basic equation

It has been shown that the integration of the boundary layer

equations could be done in the tangent plane instead of using

the generalized coordinates. For this reason, the equations

can be written in cartesian coordinates. For a compressible

turbulent boundary layer, equations (2a), (4a) and the energy
equation become

LOz' 4 L&q = L OX _ i = 1,2 (13a)

(/,2a_
o = 1,2(13b)

Z



with

-- [ 10L _OL"_

and the equation of the streamline parallel to the wall

dz 1 d= 2

In these relations, only applicable in a cartesian reference(13c)
frame, u_ is the modulus of the external velocity and the fric-

tion velocity.

(14) Laminar-turbulent transition

Longitudinal instability mode

(15) Two criteria are used to predict the onset of transition. Both
are based on stability calculations for the self-similar Falkner-

Skan velocity profiles and on the relation proposed by Mack 26

to link the total amplification coefficient n of the most unsta-

ble instability waves, at the point of transition, to the turbu-

lence level of the external flow

nr = -2.4 In T,, - 8.43 (20)

In a first criterion proposed by Arnal et aL l, the ve-

locity profile is characterized by the mean value of the Pohl-

hausen parameter _'_2, and n is represented as a function of

(P_,, - P_,,..) and

_,, - _,,.. = -2o6exp(257_.)

[In(108r.) 2.7w_,] (21a)

! of, d= (2_b)_ = = =_. .'-Ydz

To determine the critical value of the momentum thickness

81,¢, corresponding to the point z= , the calculated value

of On is compared to the corresponding value of 611_, given

by the stability diagrams and represented by the correlation

8u_, =exp 52 _14.8 H,= 8u,

As soon as R_,l becomes equal to Re u .... the instability waves

become amplified and z= is reached.

The second longitudinal criterion, proposed by

Arnal 4, is a parametric type method. For a given velocity

profile, characterized by the shape parameter H,, the local

amplification coefficient _r, corresponding to the frequency F,

is represented as a function of P_ in the form of two half--

parabols. This allows a simplified representation of the stabil-

ity diagrams with a minimum number of parameters. Know-

ing the evolution of the shape parameter H along an external

streamline, the total amplification coefficient is calculated and

equation (20) is used to determine the onset of transition.

dz 1 is given by the marching step along the zLlines, roughly

in the general direction of the flow. du" is the variation of

the u"-component of the velocity over the distance ds along a

streamline. The energy equation (13c) is written for the total

enthalpy h,

h, = c,r + _ (_6a)

and the effective viscosity coefficient is expressed as follows

tz,lt = p+'ylz, (17a)

where/_ is the dynamic viscosity coe_cient given by the law

of Sutherland, /a the eddy viscosity coefBcient and 7 the in-

termittency function which is equal to 0 for laminar flow and

1 in turbulent boundary layer. In the transition region,

depends on the thickening of the boundary layer represented

by the ratio of the momentum thickness to the momentum

thickness at the beginning of the transition region, 8/82, 4.

Since the first objective of this study is the valida-

tion of the numerical technique, including the discretization

scheme and the use of the osculator tangent plane, a sim-

ple turbulence model is used. The model is a direct exten-

sion of the mixing length formulation commonly used in two-

dimensional flows I2, with the damping function proposed by

Cebeci 8

0u _ o% _

,., = _,_-j-W'---_' =(_,+_,,)_=_ (18a)

o%_ o%_
",-, = _,_-j - _ = 0, + _,,)_ (_8b)

= 0,085tanh \0-_ (18d)

with Streamwise instability mode

To predict this mode of transition particular to three-dimen-

sional flows, two criteria can be used. The first one is an

extension made by Coustols 15 of a criterion originally pro-

posed by Beasley 7. The transition occurs when the Reynolds

number based on the streamwise displacement thickness f_

becomes larger than a critical value which is a function of the



longitudinalincompressibleshapeparameter.Moreprecisely,
thiscriterionreads

( o ooR_,T = 95.Sarctan (H,_2.3)2.0s_]

2.3 < Hi < 2.7 (23a)

R_,T = 150 H, < 2.3 (23b)

With this criterion, the influence of the turbulence level of the

external flow is not taken into account.

The second criterion, also developed by Coustols and

Arnal 4 3 requires a more important numerical effort and can-

not be detailed here. At each calculation station, the most

unstable direction e of the velocity profiles in the vicinity of

the crossflow direction must be determined. The transition

occurs when the Reynolds number defined with the displace-

ment thickness in the e direction becomes larger than a given

value which is a function of the turbulence level of the external

flow. The number and location of the inflection points of the

velocity profile in the e direction are also taken into account

in order to represent the results of stability calculations for

three-dimensional boundary layers.

Numerical scheme

The momentum and energy equations (13b) (13c) are discreti-

zed in the tangent plane according to the scheme presented

in figure 4. At the unknown station Q, the diffusion terms

are written at 3 points and the advection term is taken be-

tween the points P_ and r/k. Rh is the origin at the upstream

station of the streamline going through the point _. At this

stage, all the quantities are known. Pe is calculated according

equation (15) assuming a linear variation of the velocity com-

ponents at the upstream stations. This discretization scheme

le_ds, after linearization, to three tridiagonai matrices which

can be inverted independently to give the two velocity com-

ponents u 1 and u _ and the total enthalpy/h. The scheme is

stable whatever the location of points Pe may be. In prac-

tice, the marching step along X 1 is limited in order that P_

remains between the two adjacent stations K and M of the

calculation point (fig.4). This constraint is identical to the

CFL condition of a semi-explicit scheme.

To complete the integration, the normal velocity com-

ponent u _ is calculated using the continuity equation (13a).

The =l-derivatives are taken between the points L and Q and

the =2-derivatives are deduced from the relation

o_, 3

with =l and =2 the cartesian coordinates in the tan-

gent plane defined in figure 3.

At each station X 1, the boundary layer parameters

are calculated for all the points in the X= direction. This is

always done in the direction of the increasing values of X 2,

whatever the crossflowdirectionmay be, because the calcula-

tionat a particularstationisindependent of the neighbouring

points. The process isrepeated in the subgrid calculationin

the X I directionup to the station A,½ 1 of the body fittedco-

ordinate system in which the boundary conditions are given.

At thispoint, the change of directiona of the coordinate sys-

tem must be taken into account. Since itisimposed that the

calculation subgrid coincides with the station X,I_.I,a does

not have to be necessarilysmall. This means that slope dis-

continuitiesof the referencemesh can be correctlytreated. A

new osculator tangent plane iscalculated at each node ,\'_of

the station X,I+Iand the calculationprocess continues.

4 APPLICATION TO A PRO-

LATE SPHEROID

To illustrate some capabilities of the method to predict com-

plex three-dimensional boundary layers, we will consider_the

prolate spheroid with an aspect ratio equal to 6 at a 10° inci-

dence. A number of experimental studies have been devoted

to this case, in particular at the DLR 28 29 30. At the cho-

sen incidence, the experimental pressure field remains close

to the analytical inviscid pressure field. Moreover, the stag-

nation point is sufficiently close to the nose of the body to

use the simple body fitted coordinate system made of ellipses

passing through the two poles and circles included in plane._

perpendicular to the symmetry axis of the body.

In figure 5-c, the light lines show the inviscid stream-

lines at the wall and the thickest iines represent the friction

lines for a fully laminar boundary layer. The friction lines

converge to form the separatrice line 2°32. Along it, a strong

thickening of the boundary layer occurs, leading to the aban-

don of the corresponding calculation line after X/L, = 0.8.

Figure 5-a shows the wall friction lines obtained by taking

into account the transition phenomenon. With RL = 1.6 l0 s

and a turbulence level equal to 1.5 10 -_, the boundary layer

remains larainar in the windward side up to the separation

line, and turbulent in the leeward side. tn the latter side, the

accumulation of the friction lines for X/L > 0.7 can be inter-

preted as a secondary separation. In figure 5-b are plotted the

friction lines calculated by Meier et a/.29 30 from measure-

ments of the skin friction. At a 10 ° incidence, the influence of

the flow separation on the pressure field remains small which

explains the good agreement concerning the location of the

separation line in figures 5-b and 5-a. The comparison of fig-

ures 5-a and 5-c shows the great influence of the transition

phenomenon.

The same results are presented in figure 6 at a higher

Reynolds number of 7.2 106. The transition to turbulence oc-

curs sooner, which leads to the displacement of the separation

linetowards the leeward region and suppresses the secondary

separation.

In figure7 are plotted the longitudinal and stream-

wise displazement thicknesses _ and 62 as well as the shape

parameter. They are compared to experimental resultsob-

tained by Meier et al at X/L = 0.64 and 0.71. The develop-

ment of separation ischaracterized by a thickening of 51 and

z
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p



a) with transition criteria. R, = 1,6 l0 s T, = 1.5 10 -3

, _ ...... J ...... _,, _ ,,,

o 0,2 o,_ o,6 o,8 ×/L

b) experimental results from DLR 30

c) laminar calculation

Figure 5 : Ellipsoids at 10° incidence.

' I I..... , .. . _ . , . I .......... ! -- . ; .,_

o 0,2 o/, o,6 o,8 X I L

a) experimental results from "DLR80

b) wall friction lines.

R_=7,210 s T_=1.510 -s.

Figure 6 : Ellipsoids at 10° incidence.
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plane, indicates that the calculated transition point is located

at X/L = 0.85 with a turbulence level equal to 1.5 10 -3, This

turbulence level gives the correct location of the transition line

in the lee side region of the body. Its experimental value is

estimated between 1 and 2 10 -3. By taking the largest value

of turbulence level, the transition occurs at X/L -- 0.73 on

the windward symmetry line, instead of 0.65 experimentally,

but it reaches 0.17 on the upper symmetry line.

Calculation time

In the present method, the marching step in the )0 direction

is limited by the most deviated streamline at a given section.

This step is also limited with respect to the boundary layer

thickness 6. For the prolate spheroid, the marching step was

limited to be in the range 0.6_,,,, and 25,_=, the minimum

0.0 O.l 0,2 0.3 0.4 0.5 0.6 0.7 0.8

X/L

b) leeside smmetry line

and maximum values being taken in every section X 1. With

this condition, roughly 1000 calculation steps are needed in

the X _ direction. With 26 lines in the azimutal direction (for

fully laminar boundary layer and 30 _ with all the transition

) i ' 5

''''1 .... I .... I .... I .... I .... I .... I .... I .... I .... /

present method

Barberis 6 (fixed transition)

experiment 22

R.,=7,210 s T_=1.510 -s

Figure 8 : Ellipsoide at 10 ° incidence.

61, particularly important at XIL = 0.71. The evolution of

the longitudinal shape parameter H is mainly sensitive to the

nature of the boundary layer. To perform the calculation with

the present method, the analytical inviscid flow field has been

used as well as the experimental pressure field. The influence

on the results remains small. The most critical point concerns

the prediction of the transition. The external turbulence level

is equal to 1.5 10 -s, as in the experiments. With the present

calculation methods all the transition criteria have been set

active and the first one to predict transition is retained. As it

can be seen in the evolution of H in figure 7, the location of

the onset of the transition near the windward plane of symme-

try is not correctly predicted. This is difficult to explain be-

cause the transition occurs along this line by amplification of

the longitudinal instability waves which are calculated by the

second criterion 5. Maybe the use of the linear instability the-

ory along a symmetry line with a divergent flow from this line

must be questioned. Figure 7, showing the skin friction evo-

lution along the windward and leeward lines in the symmetry

-riteria.

CONCLUSION

The three-dimensional boundary layer calculation method

which has been presented is of semi-implicit type. The ad-

0.9 1.0 vection terms are discretized along the local streamlines. The

dependence domains are thereby satisfied with a simple nu-

merical scheme. The counterpart is a limitation on the size

of the marching integration step. Despite this limitation, the

efficiency of the method remains good due to the reduced

amount of calculation at each step. This is partly a conse-

quence of the use of local cartesian coordinates. The dis-

cretization of the equations in the osculator tangent plane

allows the existence of slope discontinuities in the body fit-

ted coordinate system in which the boundary conditions are

given. It also often reduces or suppresses the pre-treatment

phase of the data for a calculation.

Although the application cases which have been pre-

sented only deal with the prolate spheroid at incidence in

incompressible flow, the application range of the code is very

large. It extends from subsonic to hypersonic flows.

For turbulent boundary layers, the mixing length

model which is used up to now is restrictive. The introduction

of transport equation model is being done. It has also been

tested that the present method can run in the inverse mode

with only minor modifications.
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Abstract

In this paper we discuss our experiences with Navier-

Stokes (NS) codes using central differencing (CD) and
scalar artificial dissipation (SAD). NS-CDSAD codes

have been developed by Jameson, Martinelli, Swanson,

and Vatsa among others. Our results confirm that for

typical commercial transport wing and wing/body con-

figurations flying at transonic conditions with all tur-
bulent boundary layers, NS-CDSAD codes, when used

with the Johnson-King turbulence model, are capable

of computing pressure distributions in excellent agree-

ment with experimental data. However, results are not

as good when laminar boundary layers are present. Ex-
haustive 2-D grid refinement studies supported by de-

tailed analysis suggest that the numerical errors asso-

ciated with SAD severely contaminate the solution in

the laminar portion of the boundary layer. It is left as

a challenge to the CFD community to find and fix the
problems with Navier-Stokes codes and to produce a NS

code which converges reliably and properly captures the

laminar portion of the boundary layer on a reasonable

grid.

to other available methodologies. Thus JT-NS codes

have achieved a wide following in the CFD community.

In this paper we will present some applications of JT-

NS codes to 3-D and 2-D problems of aerodynamic in-

terest, including wing/body, nacelle, airfoil and multi-

element airfoil configurations.

We will begin our discussion with an account of
the relative success of JT-NS codes applied to 3-D

wing/body configurations with turbulent flow. We will
follow with a somewhat sadder tale for 2-D airfoils in-

volving runs of laminar flow. Our attempts to locate
the problems with 2-D JT-NS have included detailed

grid refinement studies which indicate numerical prob-
lems particularly in the laminar portion of the bound-

ary layer. These numerical problems are discussed at

length. The inability of JT-NS codes to properly cap-
ture the laminar portion of the boundary layer (on a

reasonable grid) prevents us from including a stability
analysis needed to predict the onset of transition. We

give examples where transition prediction is very im-

portant, including flow around a high-lift multi-element
airfoil configuration and for around a nacelle.

Introduction

Boeing's recent acquisition of a CP_AY Y-MP has en-

abled us to perform definitive grid-refinement studies
with NS codes. We will focus attention on :iameson-

technology (:IT) codes developed by, among others,
Jameson [1], Martinelli [21, Swanson [31, and Vatsa [41.

JT-NS codes employ central differences (CD) with

scalar artificial dissipation (SAD). From the point of

view of accuracy in a Navier-Stokes calculation, CDSAD

is thought by some not to be as good as other available

methods. Indeed, van Leer [5] boldly states that there

is no hope for the flux formula of the Jameson type.

Nonetheless, the combination of CDSAD with ttunge-

Kutta time marching, augmented with implicit residual

smoothing and multigrid, have given JT codes a well

deserved reputation of being fast and reliable compared

Wing and Wing/Body Analysis and

Design

In this section we will compare the capabilities of the

:IT-NS code TLNS3D developed at NASA Langley [4],

using the Johnson-King turbulence model [6] , with our

traditional viscous/inviscid coupled code A488.

In figure (1) we show a comparison, for a supercrit-

ical wing near design conditions, between experimen-
tal data, TLNS3D, and A488. The TLNS3D solution

matches well with test data, whereas the A488 solution

places the shock too far back. For the many test cases,

TLNS3D has proven to be consistently more accurate

than A488 [7, 8].

Another advantage TLNS3D enjoys over A488 is the

ability to predict flows at off-design conditions involving
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Encouraged by these successful analysis runs using

TLNS3D, work has begun on design. An iterative de-

sign method that allows the designer to prescribe de-

sired pressure distributions together with geometry con-

straints, such as thickness and trailing edge closure is
under development. Preliminary results based on this

method are shown in figure (3). Here the target geom-
etry is the ONERA M6 wing, and the pressure distri-

butions are given. Beginning with a NACA 0012 wing

section as an input geometry, the target geometry is ac-
curately recovered within 20 design cycles. A more de-

tailed description of the design method is under prepa-

ration [9].

Practical CFD Assessment for Wing/Body

Generally speaking, the ability of TLNS3D to prop-

erly predict the pressures at both cruise and slightly
off-desigu conditions is good. The main problems

are laminar flow predictions and accurate drag pre-

dictions. Accurate drag predictions are crucial to de-

sign/optimization. Indeed, one of the design goals is to

maximize the lift-to-drag ratio (under constraints). The

designer will make a considerable effort to reduce drag

by even as little as 1%. It is estimated that a 1% drag

reduction, for a long-range airplane such as the Boe-

ing 777, will save the airlines 6 billion dollars, based on

a 2,000 airplane fleet operating over a 20 year service

life [10]. Customer airlines require that tight perfor-

mance guarantees be offered years before the airplane is

actually built. In this tough commercial environment,

the accuracy and reliability requirements must be very

high if CFD is to be depended on to help fine tune final

a. Upper surface streamlines

Navier-Stokes

Test data

ETA = 65%

b. Pressure distributions

Figure 2: 3-D Navier-Stokes Streamlines and Pressures

at 65% semispan
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designs and to establish meaningful performance guar-
antees.

2-D Airfoil Studies

The most direct 2-D equivalent to TLNS3D is the

JT-NS code FLOMGE developed by Swanson [3] which
also incorporates the Johnson-King turbulence model.

For some flow situations, FLOMGE gives reasonable re-

sults. An example involving RAE 2822 case 6 is shown
in figure (4).
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Figure5: NACA 0012, experiment(Symbols) versus
FLOMGE (SolidLine)and ISES (DashedLine)atM -
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Figure 4: ItAE 2822 Case 6 Surface Pressures; Com-
parison of FLOMGE with Johnson-King Model and Ex-
periment [15]

There are, however, data cases which stress the credi-

bility of all currently available 2-D airfoil codes. An ap-
parently innocuous example is provided by the NACA
0012 airfoil at zero incidence. This condition removes

the angle of attack as a "Fudge Factor". In figures (5)
and (6) we compare experimental data [15] with results
computed by FLOMGE and ISES (viscous/inviscid cou-
pled code developed by Giles and Drela [13]) at two
different Mach numbers. The solutions computed by
FLOMGE and ISES agreewellwith eachotherat the

lowerMach number, but the computed shocklocations

aretoofarback on theairfoil.At thehigherMach num-
ber,theISES resultisa littlebetterthantheFLOMGE

solution,but againthe shocksare too farback. The

transitionpoint for thesecalculationswas placedat

3% ofchord,but changingthe transitionpointlocation

drastically,say to 40% ofchord,changesthe shock lo-

cationverylittle.These poor test/theorycomparisons

arepresentnot onlyforISES and FLOMGE but forall
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Figure 6: NACA 0012, experiment (Symbols) versus
FLOMGE (Solid Line) and ISES (Dashed Line) at M =
0.835, Re = 24.7 x 106, a = 0°
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Figure 9: Skin Friction Computed on (256 × 54) through

(1024 x 256) Grids for RAE 2822 Case 7.
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Navier-Stokes codes we have tried and for all turbulence

models.

We realize that one must properly account for wind

tunnel effects, especially for 2-D flows. However in

the NACA 0012 test case it would require a Mach

number reduction of more than 0.02 to produce a rea-

sonable test/theory comparison. The large number of

comparisons we have made between experimental data,

ISES, and available 2-D Navier-Stokes codes suggest
that there really is something wrong with the Navier-

Stokes codes and/or the wind tunnel data which must
be corrected.

2-D Grid Refinement Studies

As part of our program to find out if something is

ailing the 2-D Navier-Stokes codes, we have taken ad-

vantage of the large memory afforded by our CRAY Y-

MP to make exhaustive grid convergence studies. We

have conducted such studies using the central-difference

scheme of Martinelli and Jameson [2]. A grid refine-
ment study for RAE 2822-case 7 is shown in figures

(7) through (10). The flow conditions for this calcu-
lation were taken to be Moo = 0.73, a - 2.00 and

Re = 6.5 x 106 (based on chord). Transition was set
at 3% of chord.

Trailing Edge Glitches

Glitches in the solution at the trailing edge are quite

apparent. These glitches are characteristic of JT-NS

codes for airfoils with a finite trailing-edge angle. The

glitches do not go away with grid refinement. If any-

thing, they tend to increase in amplitude. We have not

found a satisfactory cure for these glitches but they can

be ameliorated by turning off the fourth order artificial

dissipation near the trailing edge.

Martinelli Compromise

On the 512 by 128 mesh (10), the transition from

laminar to turbulent flow takes place over about 10 grid

points. This spreading out of transition is caused by the
"Martinelli Compromise" in the artificial dissipation,

which has become common practice in JT-NS codes.

The "Martinelli Compromise" is introduced to enhance

convergence on grids with high-aspect ratio cells char-

acteristic of a Navier-Stokes calculation [2]. Since :IT

codes depend on explicit time marching, the local time

step they are permitted to use depends on how long it
takes information to traverse the cell in the short direc-

tion. For a high aspect ratio cell this does not provide
time for information to traverse the cell in the long di-

rection. To ensure convergence, Martinelli dissipates

the information traveling in the long direction by aug-

menting the artificial dissipation in this direction. The

factor by which the artificial dissipation is augmented is

proportional to the cell aspect ratio raised to the 2/3's

power. Thus in the case of a 1000-to-1 aspect-ratio cell,

the artificial dissipation in the long direction is multi-

plied by 100.

The "Martinelli Compromise" does serve to improve

the speed and reliability of convergence, but as can be

seen clearly at the transition point, the quality of the

solution is indeed compromised. In some JT codes the

ill effects of augmenting the artificial dissipation are

diminished by reducing the 2/3's power to something
smaller like 1/2 or even 0_' The artificial dissipation in

ARC2D [16] is essentially the same as that present in
JT codes, except that no compromise is introduced. As

a result, transition in ARC2D typically takes place over

3 points. On the other hand it has been our experience

that ARC2D does not converge as reliably or as fast as
JT codes.

Laminar Flow Convergence

In looking at figures (7) through (10) one notices that,

as grid density is increased, the airfoil surface pressure
distribution first begins to lock onto its grid converged

values (with the exception of the immediate shock re- :

gion), next the turbulent skin friction distribution locks
in (but not at the shock), and finally (on unacceptably

fine grids) the laminar skin friction distribution begins
to lock in. We find it disturbing that a Navier-Stokes

code would have so much trouble with laminar flow, par-

ticularly when compared to the resolution requirements

for accurate solutions in boundary-layer codes.

For typical airfoils, the boundary layer is laminar for

only a few percent of chord, and poorly resolved lami-

nar regions often have little impact on the lift and drag
calculations. However, we are also concerned with sit-

uations where laminar flow and transition prediction

are important; hybrid laminar flow control and high-lift

devices are two examples. For these flow fields, accu-

rate prediction of laminar boundary layers on reason-

able grids is crucial. The behavior at the shock (skin-
friction reversal only on the 1024 by 256 grid) could also

have an impact on the pressure drag.

SAD Laminar Flow Test Case

The poor performance of methods using scalar artifi-

cial dissipation (SAD) for high Reynolds number lam-
inar flows can be demonstrated by considering flow

over a flat plate at zero incidence. We present re-

sults for a laminar flat plate at a Reynolds number

of Re = 500,000 and free stream Mach number of

Moo = 0.3. More detailed results for this test case will

be presented elsewhere.

Two numerical schemes are employed to solve this

r
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Figure 11: Grid Convergence of Velocity Profiles at
z = 1 for Central Difference with Scalar Artificial Dis-

sipation

ters _ x =

grid

16x8

32 x 16

64 x 32

128 x 64

Blasius

C! 6" 6 C! Ree

(xlO00) (xlO00) (xlO00)

1.683 6.240 3.514 2.956

1.693 5.343 2.741 2.321

1.124 2.977 1.158 0.651

0.965 2.564 1.009 0.487

0.9390 2.434 0.9390 0.4409

Table 2:

6* #

(x 1000) (x 1000)

2.435 1.096 0.5512

2.509 0.994 0.4481

2.465 0.956 0.4392

2.450 0.9471 0.4413

2.434 0.9390 0.4409
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Figure 12: Grid Convergence of Velocity Profiles at
z = 1 for Second-Order Upwind

flow. The first utilizes Jameson technology--central

differencing with scalar artificial dissipation--to dis-
cretize the inviscid fluxes. The second scheme dis-

cretizes the inviscid fluxes using Roe's flux-difference

splitting with second order upwind extrapolation of cell-

centered states to cell faces [19]. Both schemes discretize

the viscous fluxes using central differencing.

Figures (11) and (12) show velocity profiles at z = 1

unit downstream of the plate leading edge computed

using the two numerical schemes. The profiles are com-

puted on a sequence of four grids obtained by deleting
every other grid line f_om the finest grid in the typical

multigrid fashion. The finest grid contains 64 cells nor-

mal to the plate with the upper boundary at approx-

imately three boundary layer thicknesses; the grid is

parabolically stretched away from the plate. The grid is
also parabolicaUy stretched away from the leading edge

in = with a grid spacing of approximately Az = 0.03 at
z=l.

Figures (11) and (12) show much faster grid conver-
gence for the profiles computed with the upwind scheme.

The central-difference results are characterized by an

overshoot in the velocity near the edge of the bound-

ary layer and a significant thickening of the boundary

layer. The two coarsest upwind profiles also show an

overshoot, but that for the 16-cell grid is no worse than
the result for the central difference scheme on the 64-cell



finestgrid.

The disparity in accuracy between the central-

difference and upwind solutions is further shown in Ta- as

bles 1 and 2, where skin friction, displacement and mo-

mentum thicknesses are compared with the Blasius pro-
8O

file parameters at z = 1. Table 1 shows a quite rapid re-

duction in errors for the central-difference scheme with j

increased grid density (better than second order), but
coarse grid errors are enormous compared to the upwind ss

scheme results. For the 32-cell grid, the upwind solution

contains approximately 18 cells within the boundary
layer and gives 2% errors in the predicted parameters, so

This is consistent with our experience on resolution re-

quirements for boundary layer solvers. In comparison,
the central-differenceresultsare stillinerrorby 20% on 4s

thissame grid.
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We have identifiedthe culpritfor the relativelypoor

performance of the central-differencescheme; it isthe

scalarfourth-differenceartificialdissipationin the nor-

mad direction;itisnot relatedto the "MartineIliCom-

promise". Specifically,contamination resultsfrom ex-

cessivedissipationnormal to the boundary layerin the

z-momentum equation. This occurs because the artifi-

cialdissipation is scaled by the flux Jacobian spectral

radius Ivi + e, whereas a properly formulated matrix

dissipation or upwind scheme (e.g. Roe's flux-splitting)

scales the normal dissipation by Ivl- It is easily shown

that with the Ivl + c scaling, the normal artificial dissi-

pation in the z-momentum equation is proportional to

(Ag/6)3_/M based on edge conditions. Therefore,

as the Reynolds number is increased, more grid reso-

lution (i.e_ more grid po_mts across the boundary layer

thickness 6) is required to achieve a given level of accu-
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racy. This also explains why similar poor performance

of scalar dissipation methods is not seen in low Reynolds
number flows.

To illustrate the contamination, the budget for the

z-momentum equation for the profile of cells at z = 1

is plotted in Figures (13), (14) and (15) for the central-

difference and upwind schemes on the finest grid. In the

figures, EULI, VISI and DSPI represent the difference

in inviscid, viscous, and artificial dissipation fluxes, re-

spectively, through the vertical faces of each cell (i.e.

streamwise fluxes). EULJ, VISJ and DSP:J represent

the analogous flux differences through horizontal faces

(i.e. normal fluxes). For the upwind scheme, DSPI and
DSP:J are taken as the difference of the split-fluxes and

the face-averaged fluxes; hence, EULI and EULJ are
consistently defined between the upwind and central-
difference schemes.

Figures (13) and (14) reveal that the normal artifi-

cial dissipation (DSPJ) is large everywhere in the pro-
file, even outside the boundary layer. Near the wall,

the momentum balance is completely nonphysical with

artificial dissipation (DSPJ) balancing viscous diffusion

(VISJ). The budget for the upwind scheme is more phys-

ical; artificial dissipation is small everywhere, and the

dom/nant terms are EULI, EULJ, and VISJ.

Some previous researchers have introduced sd hoc

scaling reductions of the artificial dissipation through

the boundary layer as an attempt to eliminate contami-

nation. We have also applied some of these "fixes" with

disappointing results, and know of no ad hoc scaling
that will reduce the artificial dissipation across the en-

tire profile to a point where the results are comparable

to a properly formulated upwind scheme.

We wish to emphasize that these problems with

high Reynolds number laminar flows are not inherent
to central-difference schemes, but to central-difference

schemes that use scalar artificial dissipation (CDSAD).

This leads us to conclude that any scheme using scalar
artificial dissipation or any scheme that is highly dissi-

pative for low Mach number flows (e.g. van Leer's flux-
splitting, see Ref. [5]), should be suspect for calculating
laminar flows.

Our current research is directed towards improving
the convergence rates of upwind schemes to steady-

state. It is well known that reducing the spatial dissi-
pation in a scheme usually results in slower convergence

to steady-state.

2-D High-Lift Configurations

High-lift flow provides a significant challenge to CFD

technology. For instance, the CFD code must have the

ability to accurately predict the laminar boundary-layer

profile ahead of the transition point so that a transi-

tion prediction method can be applied. The confluent

boundary layer on the main element and the separated

flows in the cove and on the flap must be modeled.

There are free-shear layers in many parts of the flow-

field where the spatial length scales of the flow char-

acteristics are non-isotropic. The free-shear flows in-

teract with the boundary layer on the flap to some-

times cause dramatic and unexpected flow behavior

(e.g. Reynolds number reversal effects described in [8]).
Simple boundary-layer approximations may not be ad-

equate for such complex flows. Navier-Stokes methods

seem to be the natural choice, but even here turbulence

models remain a major issue.

We have written a code called A610 described in [17]

that uses viscous/inviscid coupling to calculate flows

around multi-element airfoil configurations. We will

compare A610 with the Mavriplis unstructured grid NS

code [18] for a Douglas 3 element configuration tested
at LTPT. Comparisons between experiment, A610 and

the Mavriplis code for 8, 20, and 23 degrees angle of

attack are shown figures (16), (17), and (18). In order

to run with A610, the coves on the lower surfaces of the

leading edge slat and near the rear of the main element

had to be smoothed. The effects of this smoothing are

particularly noticeable in the A610 results at 8 °. At all

angles of attack A610 seems to predict Cp peaks that
are a little too high. The overall test/theory compar-

isons seem to favor A610 at 20 ° and the Mavriplis code
at 23 °. At 8 ° A610 properly predicts separation for the

trailing edge of the flap while the Mavriplis code does

not. The inability to predict this flow separation seems

to be a failing of the Chimera based Navier-Stokes codes
as well.

Practical CFD assessment for High-Lift

Given these results there does not appear to be any

strong reason for us to favor the Navier-Stokes code.

All the more so since we know that being a NS-CDSAD

code, the Mavriplis code is not able to properly cal-
culate the laminar portions of the boundary layer and

thus can not give us a transition prediction capability.

The importance of transition, shown in figure (19), is

computed using A610. When the Navier-Stokes codes

come closer to achieving their theoretical potential, we
will use them in earnest.

Also, while the preliminary capability in 2-D is being
developed by many researchers, we badly need a 3-D

code. In three dimensions, high-lift flow can be even

more complex than in two dimensions. The edge vor-

tices, gap flows, and embedded longitudinal vortices in

the boundary layer all have strong effects on the overall

performance of the high-lift system.
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Nacelle-Flow Analysis

Nacelle analysis and design is an integral part of the

airplane design process. In advanced aircraft, propul-

sion systems are closely coupled with the airframe, and

proper engine installation is essential in order to im-

prove the overall performance of the aircraft. Inviscid

methods (panel and full-potential) have been very use-
ful, but viscous effects are also of interest especially for

off-design conditions on large twin-engine airplanes.

It is relatively easy to analyze an isolated flow-

through nacelle using a code written to treat wings. We
have adapted the TLNS3D Navier-Stokes code. The na-

celle is treated as a ring wing, with periodic boundary

conditions. To simulate a powered nacelle one can ei-

ther specify inlet and exhaust boundary conditions, or

use a center body with variable geometry to control the

mass flux through in the engine. At cruise condition,

the Navier-Stokes code provides accurate results, simi-

lar to that of wing or wing/body analysis. Problems are
encountered in nacelle analysis with low-speed takeoff

conditions, and with high-speed engine-out conditions.

At takeoff, the effective angle of attack for the na-

celle is high. The flow is highly three-dimensional, and

a laminar separation bubble may form at the nacelle

highlight region. The marginal accuracy of the avail-
able Navier-Stokes codes in the laminar flow region was

mentioned above. In the long run we must arrive at a

reliable 3-D boundary-layer transition-prediction capa-

bility, as well as a plausible behavior in the transition

region, before we can capture the laminar separation
bubble. This bubble has dramatic effects on the overall

flow field. Figure (20) compares the results of nacelle

analysis, first treating the flow as fully turbulent (tur-

bulence model active in the whole domain), and then

assuming transition at 5% from the leading edge (turbu-

lence model active only downstream of that line). The

results are drastically different, and neither agree well

with experiment. The flow pattern with transition at
5% is however similar to the experimental pattern.

At a high-speed, engine-out condition the large

amount of spillage around the nacelle results in a strong
shock on the exterior surface of the fan cowl, which may

cause severe shock-induced separation. Present Navier-

Stokes technology is capable of handling mild shock-

induced separation. However, none of the turbulence

models tested gives reliable solution for strong shock-

induced separation.

In summary, attempts at nacelle analysis and engine-

airframe integration by Navier-Stokes solutions raise the

same issues as wing design. These are: gridding difH-

culties when other components are included; numeri-

cal accuracy particularly in the boundary layers; and

Effects of trip 1ocatlon on nacelle lip separation

(High alpha, low Reynolds No.)

All turbulent

Trip st 5_ from

,le,_ding edKe

Figt)re 20: Nacelle with transition at 5% versus all tur-
bulent flow

bers and extreme velocity peaks at the lips, laminar re-

gions may exist in the boundary layers and exert much
control over the global flow field. In the long run we

need a reliable and, as much as possible, automatic 3-

D boundary-layer transltlon-prediction capability. For

this, two key ingredients are--presumably--a stabil-

ity analysis with sufficient robustness and generality

to handle steep three-dimensional pressure gradients,
and accurate velocity profiles directly out of the Navier-

Stokes solver. Neither ingredient is at hand. The turbu-

lence models also need improvement to handle moder-

ate or massive separation, whether encountered at low-

speed takeoff conditions or at high-speed, engine-o.ut
conditions.

Conclusion

The 3-D Wing/Body calculations show that Navier-

Stokes codes hold much promise. However, our

test/theory comparisons in 2-D and for nacelles, as well

as our detailed 2-D grid refinement studies, are sober-

ing. It is apparent that much work remains to be done

in numerics and physical modeling of transition and tur-

turbulence-modeling accuracy particularlyat shock in- bulence before we can say that we have an _Industrial-

teractions.In addition,because oflower Reynolds num- Strength" Navier-Stokes code in hand.
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